cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 85 results. Next

A375710 Numbers k such that A013929(k+1) - A013929(k) = 2. In other words, the k-th nonsquarefree number is 2 less than the next nonsquarefree number.

Original entry on oeis.org

5, 6, 9, 19, 20, 21, 33, 34, 36, 49, 57, 58, 62, 63, 66, 76, 77, 88, 89, 91, 96, 97, 103, 104, 113, 114, 118, 119, 130, 131, 132, 136, 142, 149, 150, 161, 162, 174, 175, 187, 188, 189, 190, 201, 202, 206, 215, 217, 218, 225, 226, 231, 232, 245, 246, 249, 253
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 2 after the fifth and sixth terms.
		

Crossrefs

Positions of 2's in A078147.
For prime numbers we have A029707.
For nonprime numbers we appear to have A014689.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[1000], !SquareFreeQ[#]&]],2]

Formula

Complement of A375709 U A375711 U A375712.

A375712 Numbers k such that A013929(k+1) - A013929(k) = 4. In other words, the k-th nonsquarefree number is 4 less than the next nonsquarefree number.

Original entry on oeis.org

1, 4, 7, 11, 12, 13, 14, 22, 25, 26, 29, 32, 35, 39, 40, 41, 42, 50, 53, 54, 61, 64, 70, 71, 72, 75, 78, 81, 82, 83, 84, 87, 90, 98, 99, 102, 109, 110, 117, 120, 123, 124, 127, 135, 139, 140, 144, 151, 154, 155, 156, 157, 160, 163, 168, 169, 170, 173, 176, 179
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 4 after the first, fourth, and seventh terms.
		

Crossrefs

For prime numbers we have A029709.
Positions of 4's in A078147.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&]],4]

Formula

Complement of A375709 U A375710 U A375711.

A129783 Conjectured numbers n with the property that there exist two consecutive primes p and q such that pq + n is a square.

Original entry on oeis.org

1, 3, 4, 9, 10, 14, 16, 19, 21, 23, 25, 26, 29, 30, 34, 35, 36, 38, 43, 44, 46, 47, 49, 53, 58, 62, 64, 65, 66, 67, 68, 75, 77, 78, 81, 82, 83, 85, 86, 92, 94, 95, 100, 103, 106, 109, 110, 113, 115, 117, 118, 119, 121, 122, 125, 129, 134, 138, 139, 140, 143, 144, 146, 148
Offset: 1

Views

Author

Cino Hilliard, May 18 2007

Keywords

Comments

Complement of A129816. [From Omar E. Pol, Dec 26 2008]

Crossrefs

Cf. A129816. [From Omar E. Pol, Dec 26 2008]

Programs

  • PARI
    primesq(n,m) = \square of the form prime(x)*prime(x+1) + k {local(c,k,x,p1,p2,j); c=0; for(k=1,m, for(x=1,n, p1=prime(x); p2=(prime(x+1)); y=p1*p2+k; if(issquare(y), c++; print1(k","); break; ) ) ); c; }

Extensions

I don't know how many of the missing terms have been proved to be missing. Has it been proved that 2 is missing? - N. J. A. Sloane, May 20 2007

A377433 Number of non-perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 4, 5, 1, 4, 3, 1, 5, 2, 5, 7, 2, 1, 3, 1, 3, 11, 2, 5, 1, 8, 1, 5, 5, 3, 4, 5, 1, 9, 1, 2, 1, 11, 10, 2, 1, 3, 5, 1, 8, 4, 5, 5, 1, 5, 3, 1, 8, 13, 3, 1, 3, 12, 5, 8, 1, 3, 5, 6, 5, 5, 3, 5, 7, 2, 7, 9, 1, 9, 1, 5, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.
Positions of terms > 1 appear to be A049579.

Examples

			Between prime(4) = 7 and prime(5) = 11 the only non-perfect-power is 10, so a(4) = 1.
		

Crossrefs

Positions of 1 are latter terms of A029707.
Positions of terms > 1 appear to be A049579.
For prime-powers instead of non-perfect-powers we have A080101.
For non-prime-powers instead of non-perfect-powers we have A368748.
Perfect-powers in the same range are counted by A377432.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706.
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],radQ]],{n,100}]

Formula

a(n) + A377432(n) = A046933(n) = prime(n+1) - prime(n) - 1.

A377701 Number of non-perfect-powers x in the range 2^n < x < 2^(n+1).

Original entry on oeis.org

0, 1, 3, 6, 13, 29, 59, 121, 248, 501, 1008, 2024, 4064, 8150, 16323, 32686, 65418, 130906, 261913, 523966, 1048123, 2096517, 4193412, 8387355, 16775449, 33551945, 67105359, 134212792, 268428497, 536861096, 1073727974, 2147464110, 4294939718, 8589895659
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.
Also the number of non-perfect-powers with n bits.

Examples

			The non-perfect-powers in each range (rows):
   .
   3
   5  6  7
  10 11 12 13 14 15
  17 18 19 20 21 22 23 24 26 28 29 30 31
Their binary expansions (columns):
  .  11  101  1010  10001
         110  1011  10010
         111  1100  10011
              1101  10100
              1110  10101
              1111  10110
                    10111
                    11000
                    11010
                    11100
                    11101
                    11110
                    11111
		

Crossrefs

The union of all numbers counted is A007916.
For squarefree numbers we have A077643.
For prime-powers we have A244508.
For primes instead of powers of 2 we have A377433, ones A029707.
For perfect-powers we have A377467, for primes A377432, zeros A377436.
A000225(n) counts the interval from A000051(n) to A000225(n+1).
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[Length[Select[Range[2^n+1, 2^(n+1)-1],radQ]],{n,0,15}]
  • Python
    from sympy import mobius, integer_nthroot
    def A377701(n):
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        return f((1<Chai Wah Wu, Nov 06 2024

Formula

a(n) = 2^n-1-A377467(n). - Pontus von Brömssen, Nov 06 2024

Extensions

Offset corrected by, and a(16)-a(33) from Pontus von Brömssen, Nov 06 2024

A056831 LCM of composite numbers falling between n-th and (n+1)-st primes.

Original entry on oeis.org

4, 6, 360, 12, 1680, 18, 4620, 491400, 30, 1884960, 29640, 42, 45540, 12994800, 45821160, 60, 89369280, 164220, 72, 211110900, 265680, 195878760, 83434347360, 485100, 102, 578760, 108, 683760, 97661867698205811000, 1073280, 1799665560
Offset: 2

Views

Author

Labos Elemer, Aug 30 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM@@Range[Prime[n]+1, Prime[n+1]-1], {n,2,50}]
  • PARI
    a(n) = my(x=prime(n)+1); for (i=x, prime(n+1)-1, x = lcm(i, x)); x; \\ Michel Marcus, Mar 22 2020
    
  • Python
    from math import lcm
    from sympy import prime
    def A056831(n): return lcm(*range(prime(n)+1,prime(n+1))) # Chai Wah Wu, Apr 16 2023

Formula

a(A029707(n)) = A014574(n). - Michel Marcus, Mar 22 2020

Extensions

Edited by Robert G. Wilson v, Apr 12 2002

A076976 Product of the smallest prime divisors of composite numbers between successive primes.

Original entry on oeis.org

1, 2, 2, 12, 2, 12, 2, 12, 120, 2, 120, 12, 2, 12, 168, 120, 2, 120, 12, 2, 168, 12, 120, 1680, 12, 2, 12, 2, 12, 2217600, 12, 168, 2, 15840, 2, 120, 168, 12, 312, 120, 2, 15840, 2, 12, 2, 221760, 262080, 12, 2, 12, 120, 2, 18720, 264, 168, 120, 2, 120, 12, 2, 34272
Offset: 1

Views

Author

Amarnath Murthy, Oct 23 2002

Keywords

Comments

From Bernard Schott, Apr 09 2020: (Start)
a(n) = 2 iff prime(n) is in A001359 (prime gap=2).
a(n) = 12 iff prime(n) is in A029710 (prime gap=4).
a(n) = 24 * p with p prime >= 5 iff prime(n) is in A031924 (prime gap=6).
a(n) = 2^m * q with q odd >= 3 iff prime(n+1) - prime(n) = 2*m where m = A007814(a(n)). (End)

Crossrefs

Cf. A029707 (a(n)=2), A029709 (a(n)=12), A076977.

Programs

  • Maple
    p:= 2:
    for i from 1 to 100 do
      q:= p; p:= nextprime(p);
      A[i]:= mul(min(numtheory:-factorset(i)),i=q+1..p-1);
    od:
    seq(A[i],i=1..100); # Robert Israel, Mar 30 2020
  • Mathematica
    pspd[{p1_,p2_}]:=Times@@(FactorInteger[#][[1,1]]&/@Range[p1+1,p2-1]); pspd/@Partition[ Prime[Range[70]],2,1] (* Harvey P. Dale, Jan 12 2024 *)
  • PARI
    a(n) = {my(p=1, pn=prime(n)); forcomposite(c=pn, nextprime(pn+1)-1, p *= vecmin(factor(c)[,1]);); p;} \\ Michel Marcus, Mar 31 2020

Extensions

More terms from Sascha Kurz, Jan 22 2003

A320708 Indices of primes followed by a gap (distance to next larger prime) of 20.

Original entry on oeis.org

154, 259, 442, 480, 548, 753, 777, 783, 876, 971, 1035, 1066, 1095, 1106, 1147, 1254, 1277, 1302, 1337, 1345, 1355, 1381, 1396, 1400, 1423, 1438, 1562, 1592, 1613, 1662, 1669, 1808, 1955, 2016, 2043, 2081, 2116, 2129, 2147, 2226, 2302, 2307, 2387, 2517, 2547, 2563, 2694, 2724, 2745, 2755, 2766
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031938.

Crossrefs

Equals A000720 o A031938.
Row 10 of A174349.
Subsequence of A107730 (prime(n+1) ends in same digit as prime(n)).
Indices of 20's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..3000] | NthPrime(n+1) - NthPrime(n) eq 20]; // Vincenzo Librandi, Mar 22 2019
  • Mathematica
    Select[Range[3000], Prime[#] + 20 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 22 2019 *)
  • PARI
    A(N=100,g=20,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031938(n)).
A320708 = { i > 0 | prime(i+1) = prime(i) + 20 } = A001223^(-1)({20}).

A373817 Positions of terms > 1 in the run-lengths of the first differences of the odd primes.

Original entry on oeis.org

2, 14, 34, 36, 42, 49, 66, 94, 98, 100, 107, 117, 147, 150, 169, 171, 177, 181, 199, 219, 250, 268, 315, 333, 361, 392, 398, 435, 477, 488, 520, 565, 570, 585, 592, 595, 628, 642, 660, 666, 688, 715, 744, 765, 772, 778, 829, 842, 897, 906, 931, 932, 961, 1025
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2024

Keywords

Comments

Positions of terms > 1 in A333254. In other words, the a(n)-th run of differences of odd primes has length > 1.

Examples

			Primes 54 to 57 are {251, 257, 263, 269}, with differences (6,6,6). This is the 49th run, and the first of length > 2.
		

Crossrefs

Positions of adjacent equal prime gaps are A064113.
Positions of adjacent unequal prime gaps are A333214.
Positions of terms > 1 in A333254, run-lengths A373821, firsts A335406.
A000040 lists the primes, differences A001223.
A027833 gives antirun lengths of odd primes, run-lengths A373820.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    Join@@Position[Length /@ Split[Differences[Select[Range[1000],PrimeQ]]] // Most,x_Integer?(#>1&)]

A373823 Half the sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

2, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 6, 1, 3, 2, 1, 3, 2, 3, 4, 2, 1, 2, 1, 2, 7, 2, 3, 1, 5, 1, 6, 2, 6, 1, 5, 1, 2, 1, 12, 2, 1, 2, 3, 1, 5, 9, 1, 3, 2, 1, 5, 7, 2, 1, 2, 7, 3, 5, 1, 2, 3, 4, 6, 2, 3, 4, 2, 4, 5, 1, 5, 1, 3, 2, 3, 4, 2, 1, 2, 6, 4, 2, 4, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Halved run-sums of A001223.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs:
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with halved sums a(n).
		

Crossrefs

Halved run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Multiplying by two gives A373822.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]/2
Previous Showing 41-50 of 85 results. Next