cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A259389 Palindromic numbers in bases 6 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 80, 154, 191, 209, 910, 3740, 5740, 8281, 16562, 16814, 2295481, 2300665, 2350165, 2439445, 2488945, 2494129, 2515513, 7971580, 48307924, 61281793, 69432517, 123427622, 124091822, 124443290, 55854298990, 184314116750, 185794441250, 187195815770, 327925630018, 7264479038060, 27832011695551
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 17 2015

Keywords

Examples

			209 is in the sequence because 209_10 = 252_9 = 545_6.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 6], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=6; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 1000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A029953 and A029955.

A279092 Numbers that are nontrivially palindromic in two or more consecutive integer bases.

Original entry on oeis.org

10, 46, 67, 92, 98, 104, 121, 130, 135, 154, 178, 185, 191, 227, 232, 235, 277, 282, 292, 300, 326, 343, 373, 379, 410, 436, 446, 454, 455, 464, 483, 497, 543, 555, 562, 565, 631, 640, 646, 647, 651, 656, 676, 704, 738, 745, 781, 787, 797, 809, 835, 858, 862
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 31 2017

Keywords

Comments

For any integer b > 1, the base-b expansion of any number k < b will be a one-digit number, and will thus be trivially palindromic.
From Matej Veselovac, Sep 26 2019: (Start)
All terms of the sequence have 3 or more digits in at least one of the consecutive palindromic bases. The only term that has 2,3 digits exactly in the consecutive palindromic bases, is the first term a(1) = 10 = (1,0){10} = (2,2){4} = (1,0,1)_{3}, which is palindromic in bases 4,3 and has 2,3 digits in those bases, respectively.
If a term of the sequence has d digits in the smallest of the palindromic bases, then d must be odd. This is because an even length palindrome in base b, is divisible by b+1, and hence can't be palindromic in the base b+1 as it will end in 0. This implies that if a term has an equal number of digits in all bases, that number must be odd.
All terms that have exactly d = 3 digits in consecutive palindromic number bases b,b-1,... are given by the following two families (if and only if relation):
1. n = (x+1, y+4, x+1)_{b = 5+x+y} = (x+1)(5+x+y)^2+(y+4)(5+x+y)^1+(x+1)
2. n = (x+2, 5, x+2)_{b = x+6} = (x+2)(x+6)^2+5(6+x)^1+(x+2)
Where x, y = 0,1,2,3,... go over all nonnegative integers, where (a_1, a_2, a_3) represents digits in base {b} in terms of x, y; and where the RHS is the decimal expansion.
There are similar families for every subsequence of terms having exactly d digits in all bases, but they get much more complex for d >= 5. The d = 5 case is included at the link "Special linear Diophantine system - is it solvable in general?".
Specifically, every subsequence of terms with exactly d digits in all of the consecutive palindromic bases, is infinite. This is proven by finding the following subsequence of such subsequences:
We can construct a subsequence yielding infinitely many terms for every digit case d. For example, one such family is given by (b-1,0,b-1,0,...,0,b-1)_{b}, by alternating "b-1" and "0" digits in base b, and will be nontrivially palindromic in base b+1 as well, for all b > binomial(2k, k), where d=2k+1 is an odd number of digits, for every natural number k. That is, in the decimal expansion, these terms are equal to (b^(2k+2)-1)/(b+1), giving infinitely many terms for every k, that have d=2k+1 digits in palindromic bases b, b+1, for every b > binomial(2k, k).
In contrast, if the number of digits is not equal in all of the consecutive palindromic bases, then every subsequence that is bounded by a maximal number of d digits allowed in the consecutive palindromic bases, seems to be finite.
That is, we can say "almost all" terms in this sequence belong to the case of having an equal number of digits in all consecutive palindromic bases. The remaining terms, that do not have an equal number of digits in all consecutive palindromic bases, are given in A327810.
(End).

Examples

			10 is in the sequence because the bases in which 10 is nontrivially palindromic include 3 and 4: 10 = 101_3 = 22_4.
178 is in the sequence because the bases in which 178 is nontrivially palindromic include 6, 7, and 8: 178 = 454_6 = 343_7 = 262_8.
252 is nontrivially palindromic in 11 integer bases (2002_5 = 252_10 = ee_17 = cc_20 = 99_27 = 77_35 = 66_41 = 44_62 = 33_83 = 22_125 = 11_251), but none of these bases are consecutive integers, so 252 is not in the sequence.
		

Crossrefs

Cf. A002113 (palindromes in base 10), A048268 (smallest palindrome greater than n in bases n and n+1).
Numbers that are palindromic in bases k and k+1: A060792 (k=2), A097928 (k=3), A097929 (k=4), A097930 (k=5), A097931 (k=6), A099145 (k=7), A099146 (k=8), A029965 (k=9), A029966 (k=11).
Cf. A279093 (analogous with three or more consecutive integer bases).
Cf. A327810 (subsequence with different number of digits in those bases).

Programs

  • Mathematica
    palQ[n_Integer, base_Integer] := Boole@ Block[{}, Reverse[idn = IntegerDigits[n, base]] == idn]; fQ[n_] := Block[{b = 2}, While[b < n && {palQ[n, b], palQ[n, b + 1]} != {1, 1}, b++]; b < n]; Select[ Range@1000, fQ] (* Robert G. Wilson v, Jan 31 2017 *)
    c[b1_, d_] := Pick[FromDigits[#, b1 + 1] & /@ #, PalindromeQ[#] && Length[#] > 1 & /@ #] &@ IntegerDigits[ FromDigits[#, b1] & /@ (Flatten[Outer[List, Range[1, b1 - 1], Sequence @@ ConstantArray[Range[0, b1 - 1], d + 0]], d + 0][[All, Join[Range[d + 1], Reverse[Range[1, d + 0]]]]]), b1 + 1]; a[L_] := DeleteDuplicates[Sort[Select[Flatten[Table[c[b1, d], {d, 1, Ceiling[Log[2, L]/2] + 1}, {b1, 2, Ceiling[L ^(1/(2 d))]}]], # Matej Veselovac, Sep 28 2019 *)

A279093 Numbers that are nontrivially palindromic in three or more consecutive integer bases.

Original entry on oeis.org

178, 300, 373, 676, 1111, 1702, 2473, 3448, 4651, 6106, 7837, 9868, 12223, 14926, 18001, 21472, 25363, 29698, 34501, 39796, 45607, 51958, 58873, 66376, 74491, 83242, 92653, 102748, 113551, 125086, 137377, 150448, 164323, 179026, 194581, 211012, 228343, 246598
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 31 2017

Keywords

Comments

For any integer b > 1, the base-b expansion of any number k < b will be a one-digit number, and will thus be trivially palindromic.
For each j >= 5 and odd, k = (j^3 + 6*j^2 + 14*j + 11)/2 is a term in the sequence, and represents a 3-digit palindrome in each of three consecutive integer bases:
.
base 1st digit 2nd digit 3rd digit
---- --------- --------- ---------
j+1 (j+3)/2 (j+5)/2 (j+3)/2
j+2 (j+1)/2 (j+3)/2 (j+1)/2
j+3 (j-1)/2 (j+7)/2 (j-1)/2
.
(see 178 and 373 in the Example section). Nearly all of the first 95 terms of this sequence are terms of this form.
For each j >= 44 and divisible by 4, k = (3*j^5 + 30*j^4 + 125*j^3 + 270*j^2 + 307*j + 148)/4 is a term in the sequence, and represents a 5-digit palindrome in each of three consecutive integer bases:
.
base 1st digit 2nd digit 3rd digit 4th digit 5th digit
---- --------- --------- --------- --------- ---------
j+1 3*j/4 + 4 j/2 + 9 j/4 + 11 j/2 + 9 3*j/4 + 4
j+2 3*j/4 + 1 j/2 + 2 j/4 + 0 j/2 + 2 3*j/4 + 1
j+3 3*j/4 - 2 j/2 + 10 j/4 - 11 j/2 + 10 3*j/4 - 2
.
[Reformatted by Jon E. Schoenfield, Apr 01 2018]
From Matej Veselovac, Mar 31 2018: (Start)
Similarly to the one 3-digit and one 5-digit families given above, at least seven more infinite families exist, for 7-digit consecutive palindromes. Given a nonnegative integer n, we have the following representations palindromic in exactly three consecutive integer number bases j+1, j+2, j+3 :
1. For each j = 36+12n, k = (816 + 2474*j + 3114*j^2 + 2117*j^3 + 852*j^4 + 209*j^5 + 30*j^6 + 2*j^7)/12 is a term of the sequence.
2. For each j = 55+6n, k = (245 + 748 j + 980 j^2 + 718 j^3 + 320 j^4 + 88 j^5 + 14 j^6 + j^7)/6 is a term of the sequence.
3. For each j = 73+2n, k = (247 + 748 j + 980 j^2 + 718 j^3 + 320 j^4 + 88 j^5 + 14 j^6 + j^7)/2 is a term of the sequence.
4. For each j = 116+12n, k = (2440 + 7366 j + 9694 j^2 + 7171 j^3 + 3232 j^4 + 895 j^5 + 142 j^6 + 10 j^7)/12 is a term of the sequence.
5. For each j = 172+6n, k = (812 + 2446 j + 3290 j^2 + 2527 j^3 + 1190 j^4 + 343 j^5 + 56 j^6 + 4 j^7)/6 is a term of the sequence.
6. For each j = 288+12n, k = (1176 + 3566 j + 4374 j^2 + 2807 j^3 + 1032 j^4 + 227 j^5 + 30 j^6 + 2 j^7)/12 is a term of the sequence.
7. For each j = 277+6n, k = (1237 + 3740 j + 4900 j^2 + 3590 j^3 + 1600 j^4 + 440 j^5 + 70 j^6 + 5 j^7)/6 is a term of the sequence.
The smallest terms given by these families are of magnitudes ~ 10^10.3, 10^11.5, 10^12.8, 10^14.4, 10^15.5, 10^16.4 and 10^17. The smallest term of the next family, if it exists, is at least of magnitude ~ 10^18.
Almost all known terms of the sequence so far belong in one of the above defined families, either being 3-, 5-, or 7- digit palindromes in exactly 3 consecutive integer number bases.
There are 13 known terms that do not belong to any families: 300, 3360633, 19987816, 43443858, 532083314, 1778140759, 2721194733, 11325719295, 47622367425, 97638433343, 224678540182, 265282702996, 561091062285 (all but 300 so far are 7-digit cases).
Infinite families for consecutive palindromes longer than 7 digits, as well as any examples for those cases, have not yet been observed.
Smallest example for 9-digit consecutive palindromes does not exist within first 100 integer number bases, thus is at least > 10^16.
Similarly, no terms palindromic in 4 or more consecutive integer number bases have been found, so far.
[Extended by Matej Veselovac, Feb 05 2019] (End)

Examples

			178 is in the sequence because the bases in which 178 is nontrivially palindromic include 6, 7, and 8: 178 = 454_6 = 343_7 = 262_8.
373 is in the sequence because the bases in which 373 is nontrivially palindromic include 8, 9, and 10: 373 = 565_8 = 454_9 = 373_10.
265282702996 is in the sequence because the bases in which it is nontrivially palindromic include 43, 44, and 45.
130 is nontrivially palindromic in 7 integer bases (11211_3 = 2002_4 = 202_8 = aa_12 = 55_25 = 22_64 = 11_129), but these bases do not include three consecutive integers, so 130 is not in the sequence.
		

Crossrefs

Cf. A002113 (palindromes in base 10), A048268 (smallest palindrome greater than n in bases n and n+1).
Numbers that are palindromic in bases k and k+1: A060792 (k=2), A097928 (k=3), A097929 (k=4), A097930 (k=5), A097931 (k=6), A099145 (k=7), A099146 (k=8), A029965 (k=9), A029966 (k=11).
Cf. A279092 (numbers that are nontrivially palindromic in two or more consecutive integer bases).

A053780 Palindromes arising in A053779.

Original entry on oeis.org

4, 434, 505, 18781, 27072, 33633, 1254521, 3360633, 5989895, 9145419, 10411401, 161101161, 390949093, 795303597, 935424539, 25127372152, 77753535777, 1997671767991, 2300809080032, 3754911194573, 6476856586746, 9825337335289
Offset: 1

Views

Author

G. L. Honaker, Jr., Mar 29 2000

Keywords

Comments

a(8)=3360633 coincides with A171706(3) and A171741(6) (and see a(6)=33633 here).
Also, note that A029965 ran just short of the OEIS space limitation, possibly affecting discovery.

Crossrefs

Extensions

More terms from Patrick De Geest, Nov 15 2000

A248889 Palindromic in base 10 and 18.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 171, 323, 343, 505, 595, 686, 848, 1661, 2112, 3773, 23332, 46664, 69996, 262262, 583385, 782287, 859958, 981189, 1254521, 1403041, 1832381, 39388393, 54411445, 55499455, 88844888, 118919811, 191010191
Offset: 1

Views

Author

Mauro Fiorentini, Mar 05 2015

Keywords

Comments

a(54) > 10^12.

Examples

			848 in decimal is 2B2 in base 18, so 848 is in the sequence.
1661 in decimal is 525 in base 18, so 1661 is in the sequence.
1771 in decimal is 587 in base 18, which is not a palindrome, so 1771 is not in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^7] | Intseq(n) eq Reverse(Intseq(n)) and Intseq(n,18) eq Reverse(Intseq(n,18))]; // Vincenzo Librandi, Mar 21 2015
    
  • Maple
    IsPalindromic := proc(n, Base)
        local Conv, i;
        Conv := convert(n, base, Base);
        for i from 1 to nops(Conv) / 2 do
            if Conv [i] <> Conv [nops(Conv) + 1 - i] then
                return false;
            fi:
        od:
        true;
    end proc:
    Base := 18;
    A := [];
    for i from 1 to 10^6 do:
       S := convert(i, base, 10);
       V := 0;
       if i mod 10 = 0 then
          next;
       fi;
       for j from 1 to nops(S) do:
          V := V * 10 + S [j];
       od:
       for j from 0 to 10 do:
          V1 := V * 10^(nops(S) + j) + i;
          if IsPalindromic(V1, Base) then
             A := [op(A), V1];
          fi;
       od:
       V1 := (V - (V mod 10)) * 10^(nops(S) - 1) + i;
       if IsPalindromic(V1, Base) then
          A := [op(A), V1];
       fi;
    od:
    sort(A);
  • Mathematica
    palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Select[Range[0, 499], palindromicQ[#] && palindromicQ[#, 18] &] (* Alonso del Arte, Mar 21 2015 *)
  • PARI
    isok(n) = (n==0) || ((d = digits(n, 10)) && (Vecrev(d) == d) && (d = digits(n, 18)) && (Vecrev(d) == d)); \\ Michel Marcus, Mar 14 2015
    
  • Python
    def palgen10(l): # generator of palindromes of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                n = 10**(x-1)
                n2 = n*10
                for y in range(n,n2):
                    s = str(y)
                    yield int(s+s[-2::-1])
                for y in range(n,n2):
                    s = str(y)
                    yield int(s+s[::-1])
    def palcheck(n, b): # check if n is a palindrome in base b
        s = digits(n, b)
        return s == s[::-1]
    A248889_list = [n for n in palgen10(9) if palcheck(n, 18)]
    # Chai Wah Wu, Mar 23 2015

A046479 Primes that are palindromic in bases 10 and 11.

Original entry on oeis.org

2, 3, 5, 7, 787, 38183, 3286823, 998111899, 999454999
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1998

Keywords

Examples

			787_10 = 656_11. - _Jon E. Schoenfield_, Apr 10 2021
		

Crossrefs

A248899 Numbers that are palindromic in bases 10 and 19.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 666, 838, 1771, 432234, 864468, 1551551, 1897981, 2211122, 155292551, 330050033, 453848354, 467535764, 650767056, 666909666, 857383758, 863828368, 47069796074, 62558085526, 67269596276, 87161116178, 96060106069, 121791197121, 127673376721, 139103301931, 234595595432, 246025520642
Offset: 1

Views

Author

Mauro Fiorentini, Mar 06 2015

Keywords

Comments

Next term > 10^12.

Examples

			838 = 262 in base 19.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^7] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 19) eq Reverse(Intseq(n, 19))]; // Vincenzo Librandi, Mar 08 2015
  • Maple
    IsPalindromic := proc(n, Base)   local Conv, i;
       Conv := convert(n, base, Base);
    for i from 1 to nops(Conv) / 2 do:
        if Conv [i] <> Conv [nops(Conv) + 1 - i] then
           return false:
        fi:
    od:
    return true;
    end proc;
    Base := 19;
    A := [];
    for i from 1 to 10^6 do:
       S := convert(i, base, 10);
       V := 0;
       if i mod 10 = 0 then
          next;
       fi;
       for j from 1 to nops(S) do:
          V := V * 10 + S [j];
       od:
       for j from 0 to 10 do:
          V1 := V * 10^(nops(S) + j) + i;
          if IsPalindromic(V1, Base) then
             A := [op(A), V1];
          fi;
       od:
       V1 := (V - (V mod 10)) * 10^(nops(S) - 1) + i;
       if IsPalindromic(V1, Base) then
          A := [op(A), V1];
       fi;
    od:
    sort(A);
  • Mathematica
    palQ[n_, b_] := Block[{d = IntegerDigits[n, b]}, If[d == Reverse@ d, True, False]]; Select[Range[0, 10^6], And[palQ[#, 10], palQ[#, 19]] &] (* Michael De Vlieger, Mar 07 2015 *)
    b1=10; b2=19; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10^7}]; lst (* Vincenzo Librandi, Mar 08 2015 *)
  • PARI
    isok(n) = (n==0) || ((d = digits(n, 10)) && (Vecrev(d) == d) && (d = digits(n, 19)) && (Vecrev(d) == d)); \\ Michel Marcus, Mar 07 2015
    
Previous Showing 41-47 of 47 results.