cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A030106 Base 7 reversal of n (written in base 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 1, 8, 15, 22, 29, 36, 43, 2, 9, 16, 23, 30, 37, 44, 3, 10, 17, 24, 31, 38, 45, 4, 11, 18, 25, 32, 39, 46, 5, 12, 19, 26, 33, 40, 47, 6, 13, 20, 27, 34, 41, 48, 1, 50, 99, 148, 197, 246, 295, 8, 57, 106, 155, 204, 253, 302, 15, 64, 113, 162, 211, 260, 309, 22, 71
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,k;
      L:= convert(n,base,7);
      add(L[-i]*7^(i-1),i=1..nops(L))
    end proc:
    map(f, [$0..100]); # Robert Israel, May 19 2020
  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n,7]],7],{n,0,80}] (* Harvey P. Dale, Sep 17 2013 *)
  • PARI
    a(n,b=7)=subst(Polrev(base(n,b)),x,b) /* where */
    base(n,b)={my(a=[n%b]);while(0M. F. Hasler, Nov 04 2011

A056961 Base 12 reversal of n (written in base 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 133, 2, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122, 134, 3, 15, 27, 39, 51, 63, 75, 87, 99, 111, 123, 135, 4, 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136, 5, 17, 29, 41, 53, 65, 77, 89, 101
Offset: 0

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Crossrefs

Programs

  • Mathematica
    IntegerReverse[Range[0, 100], 12] (* Paolo Xausa, Aug 08 2024 *)

A056962 Base 16 reversal of n (written in base 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 3, 19, 35, 51, 67, 83, 99, 115, 131, 147, 163, 179, 195, 211, 227, 243, 4
Offset: 0

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Examples

			a(17) = 17 because 17 in hexadecimal is 11, the same as its reverse.
a(18) = 33 because 18 in hexadecimal is 12, and hexadecimal 21 is 2 * 16 + 1 = 33.
a(19) = 49 because 19 in hexadecimal is 13, and hexadecimal 31 is 3 * 16 + 1 = 49.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n, 16]], 16], {n, 0, 127}] (* Alonso del Arte, Sep 30 2018 *)
  • PARI
    a(n) = fromdigits(Vecrev(digits(n, 16)), 16); \\ Michel Marcus, Sep 30 2018

A091974 Let R_{k}(n) = the digit reversal of n in base k (R_{k}(n) is written in base 10). a(n) is the number of distinct values of R_{k}(n) arising if k=2,..,n+1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 5, 5, 6, 7, 9, 9, 11, 11, 12, 11, 14, 13, 16, 16, 17, 19, 21, 19, 22, 22, 21, 23, 24, 27, 27, 27, 29, 29, 32, 29, 35, 33, 36, 32, 38, 37, 41, 39, 41, 40, 42, 41, 45, 43, 45, 46, 48, 47, 49, 50, 52, 52, 55, 53, 57, 58, 56, 57, 59, 60, 61
Offset: 0

Views

Author

Naohiro Nomoto, Mar 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    rev[x_, b_]:=FromDigits[Reverse[IntegerDigits[x, b]], b]
    Length /@ Union /@ Table[Table[rev[x, b], {b, 2, x + 1}], {x, 1, 200}] (* Dylan Hamilton, Oct 16 2010 *)
  • PARI
    a(n) = #Set(apply(b -> fromdigits(Vecrev(digits(n,b)),b), [2..max(2,n+1)])) \\ Rémy Sigrist, Jan 29 2020

A055958 a(n) = n + reversal of base 9 digits of n (written in base 10).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 10, 20, 30, 40, 50, 60, 70, 80, 90, 20, 30, 40, 50, 60, 70, 80, 90, 100, 30, 40, 50, 60, 70, 80, 90, 100, 110, 40, 50, 60, 70, 80, 90, 100, 110, 120, 50, 60, 70, 80, 90, 100, 110, 120, 130, 60, 70, 80, 90, 100, 110, 120, 130, 140, 70, 80, 90
Offset: 0

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Comments

If n has an even number of digits in base 9 then a(n) is a multiple of 10.

Crossrefs

Programs

  • Mathematica
    Table[n+FromDigits[Reverse[IntegerDigits[n,9]],9],{n,0,70}] (* Harvey P. Dale, Sep 03 2013 *)
  • PARI
    a(n) = n + fromdigits(Vecrev(digits(n, 9)), 9); \\ Michel Marcus, Sep 27 2018

Formula

a(n) = n + A030108(n).

A083678 Numbers m = d_1 d_2 ... d_k (in base 10) with properties that k is even and d_i + d_{k+1-i} = 10 for all i.

Original entry on oeis.org

19, 28, 37, 46, 55, 64, 73, 82, 91, 1199, 1289, 1379, 1469, 1559, 1649, 1739, 1829, 1919, 2198, 2288, 2378, 2468, 2558, 2648, 2738, 2828, 2918, 3197, 3287, 3377, 3467, 3557, 3647, 3737, 3827, 3917, 4196, 4286, 4376, 4466, 4556, 4646, 4736, 4826, 4916
Offset: 1

Views

Author

Zak Seidov Jun 15 2003

Keywords

Comments

The two-digit terms here occur in many sequences, e.g., A066686, A081926, A017173, A030108, A043457, A052224, A061388, A084364.

Examples

			1469 and 6284 are members because 1+9=4+6=10 and 6+4=2+8=10.
		

Crossrefs

Programs

  • Mathematica
    ok10Q[n_]:=Module[{idn=IntegerDigits[n]},idn[[1]]+idn[[4]]==idn[[2]]+idn[[3]]==10]; Join[ Select[ Range[10,99],Total[IntegerDigits[#]]==10&],Select[Range[1000,9999],ok10Q]] (* Harvey P. Dale, Oct 14 2023 *)
  • PARI
    isok(n) = {digs = digits(n); if (#digs % 2 == 0, for (i = 1, #digs/2, if ((digs[i] + digs[#digs+1-i]) ! = 10, return (0));); return (1);); return (0);} \\ Michel Marcus, Oct 05 2013

A346113 Base-10 numbers k whose number of divisors equals the number of divisors in R(k), where k is written in all bases from base-2 to base-10 and R(k), the digit reversal of k, is read as a number in the same base.

Original entry on oeis.org

1, 9077, 10523, 10838, 30182, 58529, 73273, 77879, 83893, 244022, 303253, 303449, 304853, 329893, 332249, 334001, 334417, 335939, 336083, 346741, 374617, 391187, 504199, 512695, 516982, 595274, 680354, 687142, 758077, 780391, 792214, 854669, 946217, 948539, 995761, 1008487, 1377067, 1389341
Offset: 1

Views

Author

Scott R. Shannon, Jul 05 2021

Keywords

Comments

There are 633 terms below 50 million and 1253 terms below 100 million. All of those have tau(k), the number of divisors of k, equal to 1, 2, 4, 8 or 16. The first term where tau(k) = 2 is n = 93836531, a prime, which is also the first term of A136634. All terms in A136634 will appear in this sequence, as will all terms in A228768(n) for n>=10. The first term with tau(k) = 4 is 9077, the first with tau(k) = 8 is 595274, and the first with tau(k) = 16 is 5170182. It is possible tau(k) must equal 2^i, with i>=0, although this is unknown.
All known terms are squarefree. - Michel Marcus, Jul 07 2021

Examples

			9077 is a term as the number of divisors of 9077 = tau(9077) = 4, and this equals the number of divisors of R(9077) when written and then read as a base-j number, with 2 <= j <= 10. See the table below for k = 9077.
.
  base | k_base         | R(k_base)      | R(k_base)_10  | tau(R(k_base)_10)
----------------------------------------------------------------------------------
   2   | 10001101110101 | 10101110110001 | 11185         | 4
   3   | 110110012      | 210011011      | 15421         | 4
   4   | 2031311        | 1131302        | 6002          | 4
   5   | 242302         | 203242         | 6697          | 4
   6   | 110005         | 500011         | 38887         | 4
   7   | 35315          | 51353          | 12533         | 4
   8   | 21565          | 56512          | 23882         | 4
   9   | 13405          | 50431          | 33157         | 4
  10   | 9077           | 7709           | 7709          | 4
		

Crossrefs

Cf. A136634 (prime terms), A228768.
Subsequence of A062895.

Programs

  • Mathematica
    Select[Range@100000,Length@Union@DivisorSigma[0,Join[{s=#},FromDigits[Reverse@IntegerDigits[s,#],#]&/@Range[2,10]]]==1&] (* Giorgos Kalogeropoulos, Jul 06 2021 *)
  • PARI
    isok(k) = {my(t= numdiv(k)); for (b=2, 10, my(d=digits(k, b)); if (numdiv(fromdigits(Vecrev(d), b)) != t, return (0));); return(1);} \\ Michel Marcus, Jul 06 2021

A055959 n - reversal of base 9 digits of n (written in base 10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, -8, -16, -24, -32, -40, -48, -56, 16, 8, 0, -8, -16, -24, -32, -40, -48, 24, 16, 8, 0, -8, -16, -24, -32, -40, 32, 24, 16, 8, 0, -8, -16, -24, -32, 40, 32, 24, 16, 8, 0, -8, -16, -24, 48, 40, 32, 24, 16, 8, 0, -8, -16, 56, 48, 40, 32, 24, 16, 8, 0, -8, 64, 56, 48, 40, 32, 24, 16, 8, 0, 80, 0, -80, -160
Offset: 0

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Comments

a(n) is a multiple of 8.

Crossrefs

Programs

  • Mathematica
    Table[n-FromDigits[Reverse[IntegerDigits[n,9]],9],{n,0,120}] (* Harvey P. Dale, Dec 17 2022 *)

Formula

a(n) = n - A030108(n).

A091951 Let R_{k}(m) = the digit reversal of m in base k (R_{k}(m) is written in base 10). a(n) is the smallest m such that R_{k}(m) = n, where k >= 2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 5, 8, 6, 10, 7, 12, 7, 11, 9, 8, 10, 18, 9, 15, 9, 10, 13, 24, 10, 16, 15, 12, 11, 18, 11, 17, 12, 14, 19, 12, 13, 22, 21, 16, 13, 21, 13, 20, 15, 14, 23, 32, 14, 22, 15, 20, 17, 30, 15, 16, 15, 22, 31, 39, 16, 26, 33, 16, 20, 18, 17, 28, 21, 26, 17, 27, 17, 26
Offset: 0

Views

Author

Naohiro Nomoto, Mar 17 2004

Keywords

Crossrefs

A092122 Let R_{k}(m) = the digit reversal of m in base k (R_{k}(m) is written in base 10). Sequence gives numbers m such that m = Sum_{d|m, d>1} R_{d}(m).

Original entry on oeis.org

6, 154, 310, 370, 2829, 3526, 15320, 20462, 1164789, 4336106, 5782196, 145582972
Offset: 1

Views

Author

Naohiro Nomoto, Mar 30 2004

Keywords

Examples

			m = 154 is a term: Sum_{d|154, d>1} R_{d}(154) = 89 + 10 + 34 + 11 + 7 + 2 + 1 = 154.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    from sympy.ntheory import digits
    def fd(d, b): return sum(di*b**i for i, di in enumerate(d[::-1]))
    def R(k, n): return fd(digits(n, k)[1:][::-1], k)
    def ok(n):
        s = 0
        for d in divisors(n, generator=True):
            if d == 1: continue
            s += R(d, n)
            if s > n: return False
        return n == s
    print([k for k in range(1, 21000) if ok(k)]) # Michael S. Branicky, Nov 14 2022

Extensions

a(9)-a(12) from Michael S. Branicky, Nov 14 2022
Previous Showing 11-20 of 23 results. Next