cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A378328 Decimal expansion of the base 4 Champernowne constant.

Original entry on oeis.org

4, 2, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 6, 5, 7, 6, 4, 5, 5, 6, 5, 7, 1, 4, 2, 0, 1, 6, 1, 9, 8, 5, 0, 9, 5, 5, 4, 6, 2, 3, 8, 9, 6, 7, 2, 3, 0, 4, 1, 0, 6, 8, 2, 7, 9, 1, 6, 3, 5, 1, 7, 2, 5, 8, 7, 5, 5, 3, 5, 3, 9, 9, 3, 4, 4, 9, 2, 3, 1, 5, 4, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 4 and then converted into base 10.
This constant is 4-normal.

Examples

			0.426111111111111065764556571420161985095546238967230410682791635172587553...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[4], 10, 100]]

A378329 Decimal expansion of the base 5 Champernowne constant.

Original entry on oeis.org

3, 1, 0, 7, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 9, 6, 3, 0, 3, 3, 3, 1, 1, 6, 0, 4, 9, 4, 4, 8, 4, 9, 1, 1, 5, 5, 0, 4, 6, 8, 2, 6, 2, 2, 2, 6, 8, 4, 7, 0, 3, 4, 3, 3, 9, 2, 2, 9, 9, 6, 8, 7, 8, 2, 5, 1, 8, 2, 1, 0, 1
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 5 and then converted into base 10.
This constant is 5-normal.

Examples

			0.310736111111111111111111111110963033311604944849115504682622268470343392...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[5], 10, 100]]

A378330 Decimal expansion of the base 6 Champernowne constant.

Original entry on oeis.org

2, 3, 9, 8, 6, 2, 6, 8, 5, 8, 1, 5, 0, 6, 6, 7, 6, 7, 4, 4, 7, 7, 1, 9, 8, 2, 8, 6, 7, 2, 2, 0, 9, 6, 2, 4, 5, 9, 0, 5, 7, 6, 9, 7, 1, 5, 2, 9, 3, 5, 0, 2, 1, 3, 7, 6, 0, 6, 9, 3, 1, 9, 5, 6, 3, 1, 5, 7, 6, 5, 8, 3, 4, 3, 7, 7, 5, 4, 8, 3, 0, 5, 0, 7, 8, 0, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 6 and then converted into base 10.
This constant is 6-normal.

Examples

			0.239862685815066767447719828672209624590576971529350213760693195631576583...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[6], 10, 100]]

A378331 Decimal expansion of the base 7 Champernowne constant.

Original entry on oeis.org

1, 9, 4, 4, 3, 5, 5, 3, 5, 0, 8, 6, 2, 4, 0, 5, 2, 1, 4, 7, 5, 8, 4, 0, 0, 9, 3, 0, 8, 2, 9, 0, 8, 5, 7, 6, 4, 5, 2, 9, 3, 2, 9, 7, 1, 0, 5, 0, 4, 2, 2, 1, 1, 2, 4, 7, 9, 5, 8, 8, 5, 3, 1, 2, 3, 3, 6, 7, 9, 0, 8, 8, 7, 3, 9, 4, 0, 3, 5, 6, 6, 3, 9, 7, 0, 8, 5
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 7 and then converted into base 10.
This constant is 7-normal.

Examples

			0.194435535086240521475840093082908576452932971050422112479588531233679088...
		

Crossrefs

(base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[7], 10, 100]]

A378332 Decimal expansion of the base 8 Champernowne constant.

Original entry on oeis.org

1, 6, 3, 2, 6, 4, 8, 1, 2, 1, 0, 5, 2, 1, 6, 7, 9, 7, 3, 6, 7, 0, 9, 4, 9, 8, 6, 1, 4, 2, 6, 0, 5, 1, 9, 0, 2, 2, 4, 2, 3, 7, 8, 4, 3, 2, 8, 5, 4, 6, 2, 3, 3, 3, 0, 8, 1, 3, 8, 0, 7, 0, 0, 4, 2, 8, 3, 1, 9, 4, 7, 5, 9, 3, 8, 5, 2, 3, 5, 5, 7, 5, 7, 1, 1, 7, 6
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 8 and then converted into base 10.
This constant is 8-normal.

Examples

			0.163264812105216797367094986142605190224237843285462333081380700428319475...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[8], 10, 100]]

A378333 Decimal expansion of the base 9 Champernowne constant.

Original entry on oeis.org

1, 4, 0, 6, 2, 4, 9, 7, 6, 1, 1, 9, 6, 9, 6, 7, 8, 2, 4, 7, 9, 6, 6, 9, 0, 0, 8, 9, 3, 5, 6, 6, 3, 1, 8, 3, 2, 6, 5, 4, 5, 7, 0, 8, 3, 2, 4, 6, 8, 2, 8, 4, 8, 6, 6, 5, 7, 5, 5, 5, 1, 7, 1, 2, 7, 5, 4, 1, 4, 9, 1, 4, 8, 7, 8, 1, 8, 5, 4, 9, 5, 2, 4, 3, 6, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 9 and then converted into base 10.
This constant is 9-normal.

Examples

			0.140624976119696782479669008935663183265457083246828486657555171275414914...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[9], 10, 100]]

A033435 Continued fraction for Champernowne constant = 0.01234567891011121314...

Original entry on oeis.org

0, 81, 1490845, 2, 5, 2, 1, 11, 1, 1, 1, 5, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[With[{nn=20,c=Flatten[IntegerDigits/@Range[0,nn]]}, N[ FromDigits[ c]/10^Length[c],Length[c]]],16] (* Harvey P. Dale, Apr 10 2013 *)

Extensions

Next term is very large.

A066700 The leading digits in the terms in A067103 converge; dividing by a suitable power of 10 they converge to the number shown below; sequence gives continued fraction for this number.

Original entry on oeis.org

1, 2, 12, 4, 34, 1, 22, 1, 4, 1, 1, 2, 1, 1, 17, 16, 3, 1, 1, 2, 1, 1, 1, 5, 1, 1, 3, 3, 14, 2, 107, 1, 1, 8, 5, 4, 7, 1, 4, 1, 6, 3, 19, 3, 1, 1, 2, 3, 5, 76, 1, 1, 2, 1, 1, 90, 2, 2, 48717, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 14, 2, 1, 1, 2, 4, 28, 2, 3, 46, 1, 1, 3, 1, 1, 1, 2, 1, 5, 12, 1, 1, 3, 3, 1, 2, 3, 1, 78, 1, 1, 1, 3, 2, 4, 1, 6, 1, 1, 1048, 1, 3, 1, 1, 2, 3, 4, 1, 2, 4, 3, 8, 1, 12, 5, 1, 1, 7, 1, 11, 11, 1, 118, 6, 1, 2, 1, 5, 3, 1, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 3, 5, 4, 1, 12, 147838832589501802758390, 1, 10, 1, 1, 1, 2, 4, 6, 10, 2, 8, 1, 2, 1, 1, 7, 1, 1, 1, 3, 9, 1, 1, 1, 55, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Randall L Rathbun, Jan 12 2002

Keywords

Examples

			1.480389426511475059423875475946678140937510326102334419703757169...
		

Crossrefs

For a more dramatic continued fraction see A030167.

Programs

  • PARI
    {A067103(n)= c=0; d=0; for(i=1,n, c=c*10^(1+floor(3*log(i)/log(10)))+i^3; d=d*10^(1+floor(log(i)/log(10)))+i; ); floor(c/d) }
    
  • PARI
    c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908
    c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522
    lista() = my(nn=1000); default(realprecision, 1000); my(x=c3(nn)\c1(nn)); x = x/10.^(#Str(x)-1); contfrac(x); \\ Michel Marcus, May 25 2022

A293577 Decimal expansion of number with continued fraction expansion 0, 1, 12, 123, 1234, 12345, 123456, ... (A007908).

Original entry on oeis.org

9, 2, 3, 1, 2, 4, 9, 9, 9, 6, 8, 3, 4, 5, 0, 2, 4, 1, 1, 7, 4, 0, 1, 2, 3, 3, 0, 6, 0, 9, 8, 4, 2, 1, 9, 1, 6, 6, 3, 6, 7, 4, 8, 8, 6, 2, 9, 1, 6, 9, 0, 3, 9, 8, 9, 4, 1, 4, 7, 4, 4, 4, 1, 1, 1, 3, 5, 6, 7, 3, 9, 1, 1, 6, 5, 1, 4, 7, 4, 5, 2, 7, 3, 5, 4, 1, 2, 5, 4, 0, 4, 3, 2, 5, 1, 5, 0, 1, 9, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 12 2017

Keywords

Examples

			0.92312499968345024117401233060984219166367488... = 1/(1 + 1/(12 + 1/(123 + 1/(1234 + 1/(12345 + 1/(123456 + 1/...)))))).
		

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[N[FromContinuedFraction[Table[FromDigits[Flatten[IntegerDigits[Range[n]]]], {n, 0, 20}]], 101]][[1]], 100]  (* modified by Ilya Gutkovskiy, Nov 08 2017 *)

Extensions

a(99) corrected by G. C. Greubel, Nov 07 2017

A365237 Decimal expansion of 1/A033307 (decimal Champernowne constant).

Original entry on oeis.org

8, 1, 0, 0, 0, 0, 0, 0, 6, 7, 0, 7, 6, 0, 3, 3, 6, 1, 3, 3, 0, 7, 3, 1, 9, 6, 7, 3, 8, 3, 4, 1, 6, 7, 8, 7, 7, 5, 3, 5, 8, 3, 6, 4, 7, 3, 4, 7, 8, 5, 7, 9, 7, 2, 2, 5, 2, 5, 0, 9, 8, 1, 9, 8, 1, 0, 0, 3, 9, 9, 9, 5, 4, 5, 1, 7, 3, 6, 1, 6, 0, 6, 8, 2, 9, 7, 2, 1, 7, 3, 5, 8, 9, 5, 7, 1, 2, 2, 2, 6, 1, 7, 7, 7, 1, 6, 1
Offset: 1

Views

Author

Kelvin Voskuijl, Aug 27 2023

Keywords

Comments

Appears to coincide with A090903 from the 10th digit onwards.

Examples

			8.10000006707603361330731967383416787753583647347857972252510...
		

Crossrefs

Cf. A030167 (continued fraction).
Cf. A365238 (reciprocal of binary Champernowne constant).

Programs

  • Mathematica
    RealDigits[1/ChampernowneNumber[10] , 10, 120][[1]]
Previous Showing 11-20 of 21 results. Next