cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 76 results. Next

A000735 Expansion of Product_{k>=1} (1 - x^k)^12.

Original entry on oeis.org

1, -12, 54, -88, -99, 540, -418, -648, 594, 836, 1056, -4104, -209, 4104, -594, 4256, -6480, -4752, -298, 5016, 17226, -12100, -5346, -1296, -9063, -7128, 19494, 29160, -10032, -7668, -34738, 8712, -22572, 21812, 49248, -46872, 67562, 2508, -47520, -76912, -25191, 67716
Offset: 0

Views

Author

Keywords

Comments

Glaisher (1905, 1907) calls this sequence {Omega(m): m=1,3,5,7,9,11,...}. - N. J. A. Sloane, Nov 24 2018
Number 9 of the 74 eta-quotients listed in Table I of Martin (1996). See g.f. B(q) below: cusp form of weight 6 and level 4.
Grosswald uses b_n where b_{2n+1} = a(n).
Cynk and Hulek on page 14 in "The Example of Ahlgren" refer to a_p of the unique normalized weight 6 level 4 cusp form. - Michael Somos, Aug 24 2012
Expansion of q^(-1/2) * k(q) * k'(q)^4 * (K(q) / (Pi/2))^6 / 4 in powers of q where k(), k'(), K() are Jacobi elliptic functions. In Glaisher 1907 denoted by Omega(m) defined in section 62 on page 37. - Michael Somos, May 19 2013

Examples

			G.f. A(x) = 1 - 12*x + 54*x^2 - 88*x^3 - 99*x^4 + 540*x^5 - 418*x^6 - 648*x^7 + ...
G.f. B(q) = q - 12*q^3 + 54*q^5 - 88*q^7 - 99*q^9 + 540*q^11 - 418*q^13 - 648*q^15 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340.
  • Glaisher, J. W. L. (1906). The arithmetical functions P(m), Q(m), Omega(m). Quart. J. Math, 37, 36-48.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • Newman, Morris; A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A209676 is the same except for signs.
This is a bisection of A227239.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A000735List(len) = DedekindEta(len, 12)
    A000735List(42) |> println # Peter Luschny, Mar 10 2018
  • Magma
    Basis( CuspForms( Gamma0(4), 6), 85) [1]; /* Michael Somos, Dec 09 2013 */
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -12): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[(1 - x^k)^12, {k, 42}]], 42], x]
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - q^k, {k, n}]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
    
  • Sage
    CuspForms( Gamma0(4), 6, prec=85).0; # Michael Somos, May 28 2013
    

Formula

Expansion of q^(-1/2) * eta(q)^12 in powers of q.
Euler transform of period 1 sequence [-12, ...]. - Michael Somos, Sep 21 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^4*w^2 + 48*(u*v*w)^2 + 4906*u^2*w^4 - u^6. - Michael Somos, Sep 21 2005
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^5 * b(p^(e-2)). - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 24 2012
G.f.: (Product_{k>0} (1 - x^k))^12.
A000145(n) = A029751(n) + 16*a(n). - Michael Somos, Sep 21 2005
a(n) = (-1)^n * A209676(n).
Convolution inverse of A005758. Convolution square of A000729.
a(0) = 1, a(n) = -(12/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-12*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

A000377 Expansion of f(-q^3) * f(-q^8) * chi(-q^12) / chi(-q) in powers of q where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 0, 2, 2, 1, 0, 1, 0, 2, 2, 2, 0, 1, 3, 0, 1, 2, 2, 2, 2, 1, 2, 0, 4, 1, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 1, 3, 3, 0, 0, 2, 1, 4, 2, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 3, 0, 4, 0, 2, 2, 1, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 42 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + q + q^2 + q^3 + q^4 + 2*q^5 + q^6 + 2*q^7 + q^8 + q^9 + 2*q^10 + ...
		

References

  • George E. Andrews, editor, P. A. MacMahon: Collected Papers Volume II, MIT Press, 1986, p. 260.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 81, Eq. (32.5).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(24), 1), 102); A[1] + A[2] + A[3] + A[4] + A[5] + 2*A[6] + A[7] + 2*A[8] + A[9] + A[10] + 2*A[11] + 2*A[12]; /* Michael Somos, May 17 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -6, #] &]] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[(EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6] + EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3]) / 2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^3] QPochhammer[ q^8] QPochhammer[ -q, q] / QPochhammer[ -q^12, q^12] , {q, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = if( n<1, n==0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -6, p) * X)))[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^24 + A)), n))};
    

Formula

Expansion of (phi(q) * phi(q^6) + phi(q^2) * phi(q^3)) / 2 = psi(-q^2) * psi(-q^3) * chi(-q^6) * chi(-q^12) / (chi(-q) * chi(-q^2)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Jan 26 2006
Expansion of eta(q^2) * eta(q^3) * eta(q^8) * eta(q^12) / (eta(q) * eta(q^24)) in powers of q.
Multiplicative with a(0) = 1, a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), a(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24). - Michael Somos, Jun 17 2005
Moebius transform is period 24 sequence [ 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Jan 26 2006
Euler transform of period 24 sequence [ 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -2, 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 22 2011
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(8*k)) / (1 + x^(12*k)).
G.f.: 1 + Sum_{k>0} x^k * (1 + x^(4*k)) * (1 + x^(6*k)) / (1 + x^(12*k)). - Michael Somos, Sep 10 2005
G.f.: 1 + Sum{n = -infinity...infinity} (q^n + q^(5*n)) / (1 + q^(12*n)) (see Berkovich/Yesilyurt). - Ralf Stephan, May 14 2007
a(n) = (-1)^n * A190611(n). a(24*n + 13) = a(24*n + 17) = a(24*n + 19) = a(24*n + 23) = 0. a(2*n) = a(3*n) = a(n). a(2*n + 1) = A129402(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.2825... . - Amiram Eldar, Oct 23 2022

Extensions

Edited by Michael Somos, Sep 10 2002

A030199 Expansion of x * Product_{k>=1} (1 - x^k) * (1 - x^(23*k)).

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, -1, 1, 1, -1, 0, 0, 0, -1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1
Offset: 1

Views

Author

Keywords

Comments

Number 40 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - q^2 - q^3 + q^6 + q^8 - q^13 - q^16 + q^23 - q^24 + q^25 + q^26 + ...
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(23), 1), 82) [1]; /* Michael Somos, Sep 08 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^23], {q, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^23 + A), n))}; /* Michael Somos, May 02 2005 */
    
  • PARI
    {a(n) = my(A, p, e, y); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==23, 1, y = sum( x=1, p-1, (x^3 - x - 1)%p == 0); if( y==1, 1-e%2, y, e+1, (e-1)%3 - 1))))}; /* Michael Somos, Oct 19 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, qfrep([2, 1; 1, 12], n, 1)[n] - qfrep([4, 1; 1, 6], n, 1)[n])}; /* Michael Somos, Sep 08 2014 */
    
  • PARI
    {a(n) = if( n<1, 0, mfcoefs(mfeigenbasis(mfinit([23, 1, Mod(22, 23)], 0))[1], n)[n+1])}; /* Michael Somos, Aug 22 2025 */
    

Formula

Expansion of eta(q) * eta(q^23) in powers of q.
Euler transform of period 23 sequence [ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, ...]. - Michael Somos, May 02 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -v^3 + 2 *u * v * w + 2 * u * w^2 + u^2 * w. - Michael Somos, May 02 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 * u3 * u6 +2 * u1 * u2 * u3 * u6 - 2 * u1 * u6^3 + 2 * u2^2 * u3 * u6 - u2 * u3^3. - Michael Somos, May 02 2005
a(n) is multiplicative with a(23^e) = 1. Let y = number of zeros of x^3 - x - 1 modulo p, then a(p^e) = (1 + (-1)^e)/2 if y = 1, a(p^e) = e+1 if y = 3, a(p^e) = (e-1)%3 - 1 if y = 0. - Michael Somos, Oct 19 2005
a(8*n + 4) = a(23*n + 5) = a(23*n + 7) = a(23*n + 10) = a(23*n + 11) = a(23*n + 14) = a(23*n + 15) = a(23*n + 19) = a(23*n + 20) = a(23*n + 21) = a(23*n + 22) = 0. - Michael Somos, Oct 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 08 2014
2 * a(n) = A028959(n) - A028930(n). - Michael Somos, Sep 08 2014

Extensions

Reference to Martin and Ono added by Chandan Singh Dalawat (dalawat(AT)gmail.com), Jul 23 2010

A053723 Number of 5-core partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 6, 5, 7, 5, 12, 6, 12, 6, 10, 11, 16, 7, 20, 15, 12, 12, 22, 10, 25, 12, 20, 18, 30, 10, 32, 21, 24, 16, 30, 21, 36, 20, 24, 25, 42, 12, 42, 36, 35, 22, 46, 22, 43, 25, 32, 36, 52, 20, 60, 30, 40, 30, 60, 30, 62, 32, 42, 43, 60, 24, 66, 48, 44, 30, 72, 35, 72
Offset: 0

Views

Author

James Sellers, Feb 11 2000

Keywords

Comments

Number 11 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 2*x^5 + 6*x^6 + 5*x^7 + 7*x^8 + ...
G.f. = q + q^2 + 2*q^3 + 3*q^4 + 5*q^5 + 2*q^6 + 6*q^7 + 5*q^8 + 7*q^9 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988; see p. 54 (1.52).

Crossrefs

Programs

  • Mathematica
    a[n_]:=Total[KroneckerSymbol[#, 5]*n/# & /@ Divisors[n]]; Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jul 26 2011, after PARI prog. *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^5]^5 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Jul 13 2012 *)
    a[ n_] := With[{m = n + 1}, If[ m < 1, 0, DivisorSum[ m, m/# KroneckerSymbol[ 5, #] &]]]; (* Michael Somos, Jul 13 2012 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A)^5 / eta(x + A), n))};
    
  • PARI
    {a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( d, 5) * n/d))};
    
  • PARI
    {a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / ((1 - p*X) * (1 - kronecker( p, 5) * X)))[n])};

Formula

Given g.f. A(x), then B(q) = q * A(q) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 2 * u*v*w + 4 * u*w^2 - u^2*w. - Michael Somos, May 02 2005
G.f.: (1/x) * (Sum_{k>0} Kronecker(k, 5) * x^k / (1 - x^k)^2). - Michael Somos, Sep 02 2005
G.f.: Product_{k>0} (1 - x^(5*k))^5 / (1 - x^k) = 1/x * (Sum_{k>0} k * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k))). - Michael Somos, Jun 17 2005
G.f.: (1/x) * Sum_{a, b, c, d, e in Z^5} x^((a^2 + b^2 + c^2 + d^2 + e^2) / 10) where a + b + c + d + e = 0, (a, b, c, d, e) == (0, 1, 2, 3, 4) (mod 5). - [Dyson 1972] Michael Somos, Aug 08 2007
Euler transform of period 5 sequence [ 1, 1, 1, 1, -4, ...].
Expansion of q^(-1) * eta(q^5)^5 / eta(q) in powers of q.
a(n) = b(n + 1) where b() is multiplicative with b(5^e) = 5^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
Convolution inverse of A109063. a(n) = (-1)^n * A138512(n+1).
Convolution of A227216 and A229802. - Michael Somos, Jun 10 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = (1/5)^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109064. - Michael Somos, May 17 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A328717. - Amiram Eldar, Nov 23 2023

A109064 Expansion of eta(q)^5 / eta(q^5) in powers of q.

Original entry on oeis.org

1, -5, 5, 10, -15, -5, -10, 30, 25, -35, 5, -60, 30, 60, -30, 10, -55, 80, 35, -100, -15, -60, 60, 110, -50, -5, -60, 100, 90, -150, -10, -160, 105, 120, -80, 30, -105, 180, 100, -120, 25, -210, 60, 210, -180, -35, -110, 230, 110, -215, 5, -160, 180, 260
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 12 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 5*q + 5*q^2 + 10*q^3 - 15*q^4 - 5*q^5 - 10*q^6 + 30*q^7 + 25*q^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(5), 2), 54); A[1] - 5*A[2] + 5*A[3]; /* Michael Somos, May 19 2015 */
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d, 5)=0, -4, -5), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 07 2017
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^5 / QPochhammer[ q^5], {q, 0, n}]; (* Michael Somos, May 19 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -5 DivisorSum[ n, # KroneckerSymbol[ 5, #] &]]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, -5 * sumdiv(n, d, d * kronecker(5, d)))}; /* Michael Somos, May 19 2015 */
    

Formula

Euler transform of period 5 sequence [ -5, -5, -5, -5, -4, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 2 * u*v*w + u^2*w - 4 * u*w^2.
a(n) = -5 * b(n) where b() is multiplicative with a(0) = 1, b(p^e) = 1 if p=5, b(p^e) = b(p) * b(p^(e-1)) - Kronecker(5, p) * p * b(p^(e-2)) otherwise. - Michael Somos, May 19 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 5^(5/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A053723. - Michael Somos, May 19 2015
G.f.: Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k)).
a(n) = -5 * A109091(n), unless n=0. a(n) = (-1)^n * A138506(n). a(5*n) = a(n).
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A285896(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(3*sqrt(5)) = 1.471273... . - Amiram Eldar, Jan 29 2024

A115660 Expansion of (phi(q) * phi(q^6) - phi(q^2) * phi(q^3)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, -1, 1, -2, 1, 2, -1, 1, 2, -2, -1, 0, -2, 2, 1, 0, -1, 0, -2, -2, 2, 0, 1, 3, 0, -1, 2, -2, -2, 2, -1, 2, 0, -4, 1, 0, 0, 0, 2, 0, 2, 0, -2, -2, 0, 0, -1, 3, -3, 0, 0, -2, 1, 4, -2, 0, 2, -2, 2, 0, -2, 2, 1, 0, -2, 0, 0, 0, 4, 0, -1, 2, 0, -3, 0, -4, 0
Offset: 1

Views

Author

Michael Somos, Jan 28 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 41 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 14 2012

Examples

			G.f. = q - q^2 - q^3 + q^4 - 2*q^5 + q^6 + 2*q^7 - q^8 + q^9 + 2*q^10 - 2*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^6] QPochhammer[ q^24] / (QPochhammer[ q^3] QPochhammer[ q^8]), {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6] - EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3]) / 2, {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ 2, d] KroneckerSymbol[ -3, n/d], {d, Divisors[ n]}]]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # < 5, (-1)^#2, Mod[#, 24] < 12, (#2 + 1) KroneckerSymbol[ #, 12]^#2, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])]; (* Michael Somos, Oct 22 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, (-1)^e, p%24<12, (e+1) * kronecker( p, 12)^e, 1-e%2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A) / (eta(x^3 + A) * eta(x^8 + A)), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( 2, d) * kronecker( -3, n/d)))};

Formula

Expansion of eta(q) * eta(q^4) * eta(q^6) * eta(q^24) / (eta(q^3) * eta(q^8)) in powers of q.
Euler transform of period 24 sequence [ -1, -1, 0, -2, -1, -1, -1, -1, 0, -1, -1, -2, -1, -1, 0, -1, -1, -1, -1, -2, 0, -1, -1, -2, ...].
a(n) is multiplicative with a(2^e) = a(3^e) = (-1)^e, a(p^e) = e+1 if p == 1, 7 (mod 24), a(p^e) = (e+1) * (-1)^e if p == 5, 11 (mod 24), a(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker(k,8) * x^k / (1 + x^k + x^(2*k)) = Sum_{k>0} Kronecker(k,3) * x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
abs(a(n)) = A000377(n). a(n) = (-1)^n * A128581(n). a(2*n) = a(3*n) = -a(n). a(2*n + 1) = A128580(n). - Michael Somos, Mar 14 2012
abs(a(n)) = A192013(n) unless n=0. - Michael Somos, Oct 22 2015
a(3*n + 1) = A263571(n). a(4*n) = A259668(n). a(6*n + 1) = A261115(n). a(6*n + 4) = A263548(n). a(8*n + 1) = A260308(n). - Michael Somos, Oct 22 2015
a(n) = A000377(n) - A108563(n) = A046113(n) - A000377(n). - Michael Somos, Oct 22 2015

A134343 Expansion of psi(-x)^2 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, -2, 2, 0, 3, -2, 0, -2, 2, -2, 1, -2, 0, -2, 4, 0, 2, 0, 1, -4, 2, 0, 2, -2, 0, -2, 2, -2, 1, -4, 0, 0, 2, 0, 4, -2, 2, -2, 0, 0, 3, -2, 0, -2, 4, 0, 2, -2, 0, -4, 0, 0, 0, -4, 3, -2, 2, 0, 2, -2, 0, 0, 2, -2, 4, -2, 0, -2, 2, 0, 3, -2, 0, 0, 4, 0, 2
Offset: 0

Views

Author

Michael Somos, Oct 21 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 57 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 2*x^4 + 3*x^6 - 2*x^7 - 2*x^9 + 2*x^10 + ...
G.f. = q - 2*q^5 + q^9 - 2*q^13 + 2*q^17 + 3*q^25 - 2*q^29 - 2*q^37 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(64), 1), 321); A[2] - 2*A[6] + A[10] - 2*A[14] + 2*A[18] + 3*A[26] - 2*A[30] + 2*A[35] - 2*A[36]; /* Michael Somos, Jun 22 2015 */;
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]]; (* Michael Somos, Jun 22 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)]^2 / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)
    a[ n_] := SeriesCoefficient[(QPochhammer[ x] QPochhammer[ x^4] / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 4*n + 1, d, (-1)^(d\2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^4 + A) / eta(x^2 + A) )^2, n))};
    

Formula

Expansion of q^(-1/4) * (eta(q) * eta(q^4) / eta(q^2))^2 in powers of q.
Euler transform of period 4 sequence [ -2, 0, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 8 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 8), b(p^e) = (-1)^e * (e+1) if p == 5 (mod 8).
G.f.: (Product_{k>0} (1 - x^k) * (1 + x^(2*k)))^2.
a(9*n + 5) = a(9*n + 8) = 0. a(n) = (-1)^n * A008441(n). a(2*n) = A113407(n). a(2*n + 1) = -2 * A053692(n).
2 * a(n) = A204531(4*n + 1) = - A246950(n). a(4*n) = A246862(n). a(4*n + 2) = A246683(n). - Michael Somos, Jun 22 2015
a(4*n + 1) = -2 * A259287(n). a(4*n + 3) = -2 * A259285(n). - Michael Somos, Jun 24 2015
Convolution square is A121613. Convolution cube is A213791. Convolution with A000009 is A143379. Convolution with A000143 is A209942. Michael Somos, Jun 22 2015
G.f.: Sum_{k>0 odd} (x^k + x^(3*k)) / (1 + x^(4*k)) * (-1)^floor((k+1) / 4). - Michael Somos, Jun 22 2015
G.f.: Sum_{k>0 odd} (x^k - x^(3*k)) / (1 + x^(4*k)) * (-1)^floor(k / 4). - Michael Somos, Jun 22 2015

A190615 Expansion of f(x^2) * f(x^3) / (chi(x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -2, 1, -2, 0, -2, 0, 0, 2, 0, 3, -1, 2, -2, 2, -4, 0, 0, 0, 0, 2, 0, 3, 0, 2, -4, 0, -2, 0, -2, 0, 0, 0, 0, 2, -3, 4, -2, 1, -2, 0, -2, 0, 0, 2, 0, 2, -2, 2, -2, 4, -2, 0, 0, 0, 0, 0, 0, 3, 0, 4, -2, 0, -2, 0, -2, 0, 0, 0, 0, 4, -3, 2, -2, 0, -4, 0
Offset: 0

Views

Author

Michael Somos, May 14 2011

Keywords

Comments

Number 63 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + x^4 - 2*x^5 - 2*x^7 + 2*x^10 + 3*x^12 - x^13 + ...
G.f. = q - q^3 + 2*q^5 - 2*q^7 + q^9 - 2*q^11 - 2*q^15 + 2*q^21 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] EllipticTheta[ 2, 0, x^2] - EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ -x^3] / (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^12]), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 * eta(x^6 + A)^4 * eta(x^24 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)^3), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(2*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%24 < 12, (e+1) * if( p%24 < 6, 1, (-1)^e), (1 + (-1)^e) / 2 )))};

Formula

Expansion of phi(-x^3) * psi(x^4) - x * phi(-x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q) * eta(q^4)^4 * eta(q^6)^4 * eta(q^24) / (eta(q^2)^3 * eta(q^3) * eta(q^8) * eta(q^12)^3) in powers of q.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 24), b(p^e) = (-1)^e * (e+1) if p == 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ -1, 2, 0, -2, -1, -1, -1, -1, 0, 2, -1, -2, -1, 2, 0, -1, -1, -1, -1, -2, 0, 2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker( 6, k) * q^k / (1 + q^(2*k)) = Sum_{k>=0} a(k) * q^(2*k + 1).
G.f.: Product_{k>0} (1 + (-x)^k) * (1 - (-x^2)^k) * (1 - (-x^3)^k) * (1 + (-x^6)^k).
a(n) = (-1)^n * A129402(n). a(3*n + 1) = -a(n). a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0.
a(12*n) = A113700(n). a(12*n + 2) = 2 * A128583(n). a(12*n + 5) = -2 * A128591(n). - Michael Somos, Jun 09 2015
a(n) = (-1)^floor(n/2) * A128580(n) = (-1)^(n + floor(n/2)) * A134177(n). - Michael Somos, Jul 29 2015
a(3*n) = A260110(n). a(3*n + 2) = 2 * A260118(n). - Michael Somos, Jul 29 2015
a(4*n) = A260308(n). a(4*n + 1) = - A257920(n). a(4*n + 2) = 2 * A259895(n). a(4*n + 3) = -2 * A259896(n). - Michael Somos, Jul 29 2015
a(12*n + 3) = -2 * A260089(n). - Michael Somos, Jul 29 2015

A002288 G.f.: q * Product_{m>=1} (1-q^m)^8*(1-q^2m)^8.

Original entry on oeis.org

0, 1, -8, 12, 64, -210, -96, 1016, -512, -2043, 1680, 1092, 768, 1382, -8128, -2520, 4096, 14706, 16344, -39940, -13440, 12192, -8736, 68712, -6144, -34025, -11056, -50760, 65024, -102570, 20160, 227552, -32768, 13104, -117648, -213360, -130752, 160526, 319520
Offset: 0

Views

Author

Keywords

Comments

This is Glaisher's Theta(n). - N. J. A. Sloane, Nov 26 2018
Number 2 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 8*q^2 + 12*q^3 + 64*q^4 - 210*q^5 - 96*q^6 + 1016*q^7 - 512*q^8 + ...
		

References

  • J. W. L. Glaisher, On the representation of a number as a sum of 14 and 16 squares, Quart. J. Math. 38 (1907), 178-236 (see p. 198).
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 p 133.
  • G. Shimura, Modular forms of half-integral weight, pp. 57-74 of Modular Functions of One Variable I (Antwerp 1972), Lect. Notes Math. 320 (1973).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030211.

Programs

  • Magma
    Basis( CuspForms( Gamma0(2), 8), 100) [1]; /* Michael Somos, Dec 09 2013 */
  • Maple
    t1 := product((1-q^m)^8,m=1..40): subs(q=q^2,t1): series(q*t1*%,q,40);
  • Mathematica
    max = 36; f[q_] := q*Product[(1-q^m)^8*(1-q^(2m))^8, {m, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-François Alcover, Jul 18 2012 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^2])^8, {q, 0, n}]; (* Michael Somos, Apr 09 2013 *)
    a[ n_] := SeriesCoefficient[(EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q^(1/2)] / 2)^8, {q, 0, n}]; (* Michael Somos, Dec 09 2013 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */
    
  • PARI
    q='q+O('q^50); concat(0, Vec((eta(q)*eta(q^2))^8)) \\ Altug Alkan, Sep 19 2018
    
  • Sage
    CuspForms( Gamma0(2), 8, prec=100).0; # Michael Somos, May 28 2013
    

Formula

Expansion of cusp form (e(1)-e(2))(e(1)-e(3))(e(2)-e(3))^2 for GAMMA_0(2).
Expansion of q * psi(q)^8 * phi(-q)^8 in powers of q where psi(), phi() are Ramanujan theta functions. - Michael Somos, Dec 09 2013
Expansion of (eta(q) * eta(q^2))^8 in powers of q. - Michael Somos, Mar 18 2003
Euler transform of period 2 sequence [ -8, -16, ... ].
a(n) is multiplicative with a(2^e) = (-8)^e, a(p^e) = a(p) * a(p^(e-1)) - p^7 * a(p^(e-2)). - Michael Somos, Mar 08 2006
Given A = A0 + A1 + A2 + A3 is the 4-section, then 0 = A2^3 + 2 * A0 * (A1^2 + A3^2) - 4 * A1*A2*A3 - 3 * A0^2*A2. - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 16 (t/i)^8 f(t) where q = exp(2 Pi i t). - Michael Somos, Apr 09 2013
a(2*n) = -8 * a(n). Convolution square of A030211. - Michael Somos, Apr 09 2013
G.f.: x*exp(8*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

Extensions

Extended, and better description added by N. J. A. Sloane, Jan 15 1996

A007332 Expansion of 6-dimensional cusp form (eta(q) * eta(q^3))^6 in powers of q.

Original entry on oeis.org

0, 1, -6, 9, 4, 6, -54, -40, 168, 81, -36, -564, 36, 638, 240, 54, -1136, 882, -486, -556, 24, -360, 3384, -840, 1512, -3089, -3828, 729, -160, 4638, -324, 4400, 1440, -5076, -5292, -240, 324, -2410, 3336, 5742, 1008, -6870, 2160, 9644, -2256, 486, 5040
Offset: 0

Views

Author

Keywords

Comments

Number 5 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - 6*q^2 + 9*q^3 + 4*q^4 + 6*q^5 - 54*q^6 - 40*q^7 + 168*q^8 + 81*q^9 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 204.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 145, problem 13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030208.

Programs

  • Magma
    Basis( CuspForms( Gamma0(3), 6), 47) [1]; /* Michael Somos, Dec 10 2013 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^3] )^6, {q, 0, n}]; (* Michael Somos, May 28 2013 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^6, n))}; /* Michael Somos, Jul 16 2004 */
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( ( prod( k=1, n, (1 - (k%3==0) * x^k) * (1 - x^k), 1 + A) )^6, n))}; /* Michael Somos, Jul 16 2004 */
    
  • Sage
    CuspForms( Gamma0(3), 6, prec=47).0; # Michael Somos, May 28 2013
    

Formula

G.f.: x * (Product_{k>0} (1 - x^k) * (1 - x^(3*k)))^6.
Expansion of (eta(q) * eta(q^3))^6 in powers of q. - Michael Somos, Jul 16 2004
Euler transform of period 3 sequence [ -6, -6, -12, ...]. - Michael Somos, Jul 16 2004
Expansion of a newform of level 3, weight 6 and trivial character. - Michael Somos, Nov 16 2008
a(n) is multiplicative with a(3^e) = 9^e, a(p^e) = a(p) * a(p^(e-1)) - p^5 * a(p^(e-2)). - Michael Somos, Mar 08 2006
Given A = A0 + A1 + A2 is the 3-section, then 0 = A2^2 - 4 * A1*A0. - Michael Somos, Mar 08 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u * w * (u + 12 * v + 64 * w) - v^3. - Michael Somos, May 02 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^3 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 16 2008
a(3*n) = 9 * a(n). - Michael Somos, Nov 16 2008
Convolution square of A030208.
Previous Showing 11-20 of 76 results. Next