cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A109041 Expansion of eta(q)^9 / eta(q^3)^3 in powers of q.

Original entry on oeis.org

1, -9, 27, -9, -117, 216, 27, -450, 459, -9, -648, 1080, -117, -1530, 1350, 216, -1845, 2592, 27, -3258, 2808, -450, -3240, 4752, 459, -5409, 4590, -9, -5850, 7560, -648, -8658, 7371, 1080, -7776, 10800, -117, -12330, 9774, -1530, -11016, 15120, 1350, -16650
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 4 of the 74 eta-quotients listed in Table I of Martin (1996).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 9*q + 27*q^2 - 9*q^3 - 117*q^4 + 216*q^5 + 27*q^6 - 450*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 313, Equ. (14.2.13).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 44); A[1] - 9*A[2]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], - 9 DivisorSum[ n, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
  • PARI
    {a(n) = if( n<1, n==0, -9 * sumdiv( n, d, d^2 * kronecker(-3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3, n))};
    

Formula

G.f.: Product_{k>0} (1 - x^k)^9 / (1 - x^3)^3 = 1 - 9 * Sum_{k>0} x^k * (1 - x^k -6 * x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3.
Expansion of b(q)^3 in powers of q where b() is a cubic AGM theta function.
Euler transform of period 3 sequence [ -9, -9, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u*w * (u + 6*v - 8*w).
Given A = A0 + A1 + A2 is the 3-section, then 0 = A1^3 + A2^3 - 3*A0*A1*A2. A0 = A(q^3) = b(q^3)^3, A1 = -3 * a(q^3)^2 * c(q^3), A2 = 3 * a(q^3) * c(q^3)^2 where a(), b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 19683^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106402. - Michael Somos, Mar 11 2012
a(n) = -9 * A103440(n) unless n = 0. a(6*n + 5) = 216 * A134340(n).
A008654(n) = a(n) + 27 * A106402(n) is the identity a(q)^3 = b(q)^3 + c(q)^3. - Michael Somos, Jul 19 2012
a(n) = -9 * b(n) where b(n) is multiplicative with a(0) = 1, b(p^e) = 1, if p=3, b(p^e) = b(p) * b(p^(e-1)) + Kronecker(-3, p) * p^2 * b(p^(e-2)) otherwise. - Michael Somos, May 18 2015
Convolution cube of A005928. - Michael Somos, May 18 2015

A134177 Expansion of phi(-x^3) * psi(x^4) + x * phi(-x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, -2, -2, 1, 2, 0, -2, 0, 0, -2, 0, 3, 1, -2, -2, 2, 4, 0, 0, 0, 0, -2, 0, 3, 0, -2, -4, 0, 2, 0, -2, 0, 0, 0, 0, 2, 3, -4, -2, 1, 2, 0, -2, 0, 0, -2, 0, 2, 2, -2, -2, 4, 2, 0, 0, 0, 0, 0, 0, 3, 0, -4, -2, 0, 2, 0, -2, 0, 0, 0, 0, 4, 3, -2, -2, 0, 4, 0
Offset: 0

Views

Author

Michael Somos, Oct 11 2007

Keywords

Comments

Number 64 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 - 2*x^3 + x^4 + 2*x^5 - 2*x^7 - 2*x^10 + 3*x^12 + x^13 - ...
G.f. = q + q^3 - 2*q^5 - 2*q^7 + q^9 + 2*q^11 - 2*q^15 - 2*q^21 + 3*q^25 + q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n + 1}, DivisorSum[ m, KroneckerSymbol[ 12, #] KroneckerSymbol[ -2, m/#] &]]]; (* Michael Somos, Jun 24 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] EllipticTheta[ 2, 0, x^2] + EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jun 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, kronecker( 12, d) * kronecker( -2, n/d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)^4 / ( eta(x + A) * eta(x^4 + A)^3 * eta(x^6 + A)^3* eta(x^24 + A) ), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==3, 1, p%24>12, !(e%2), (e+1) * kronecker(3, p)^e)))};

Formula

Expansion of q^(-1/2) * eta(q^2)^4 * eta(q^3) * eta(q^8) * eta(q^12)^4 / ( eta(q) * eta(q^4)^3 * eta(q^6)^3 * eta(q^24) ) in powers of q.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1, 11 (mod 24), b(p^e) = (e+1) * (-1)^e if p == 5, 7 (mod 24), b(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ 1, -3, 0, 0, 1, -1, 1, -1, 0, -3, 1, -2, 1, -3, 0, -1, 1, -1, 1, 0, 0, -3, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0.
G.f.: Sum_{k>=0} a(k) * x^(2*k+1) = Sum_{k>0} Kronecker( -2, k) * (x^k - x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 + x^(6*k)) * (1 - x^(2*k) + x^(4*k))^2 / (1 - x^(4*k) + x^(8*k)).
a(n) = (-1)^n * A128580(n). a(12*n) = A113780(n).

A030206 Expansion of q^(-1/3) * eta(q)^2 * eta(q^3)^2 in powers of q.

Original entry on oeis.org

1, -2, -1, 0, 5, 4, -7, 0, -5, 2, -4, 0, 11, 0, 8, 0, -6, -10, 0, 0, -1, -8, 5, 0, -7, 14, 17, 0, 0, 0, -5, 0, -19, 10, -13, 0, 2, -4, 0, 0, -11, 8, 20, 0, 7, 0, 23, 0, 0, -22, -19, 0, 14, 0, -25, 0, 12, -16, 5, 0, -7, 0, 0, 0, 23, 12, 11, 0, 0, 20, -13, 0, 4, 0, -28, 0, -22, 0, 0, 0, 17, 2, -35, 0, 0, 16, -11, 0, 0, -10
Offset: 0

Views

Author

Keywords

Comments

Number 44 of the 74 eta-quotients listed in Table I of Martin (1996).
Denoted by g_2(q) in Cynk and Hulek in Remark 3.4 on page 12 as the unique weight 2 newform of level 27.
This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*x - x^2 + 5*x^4 + 4*x^5 - 7*x^6 - 5*x^8 + 2*x^9 - 4*x^10 + 11*x^12 + ...
G.f. = q - 2*q^4 - q^7 + 5*q^13 + 4*q^16 - 7*q^19 - 5*q^25 + 2*q^28 - 4*q^31 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(27), 2), 271); A[2] - 2*A[5]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 1, 0, 0]), 271); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(27), 2), 271)[1]; /* Michael Somos, Mar 24 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^3])^2, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(e/2)), for( i=1, sqrtint(4*p\27), if( issquare(4*p - 27*i^2, &y), break)); a0=1; a1 = y*= (-1)^(y%3); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 13 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^3 + A)^2, n))}; /* Michael Somos, Feb 19 2007 */
    
  • PARI
    {a(n) = ellak( ellinit( [0, 0, 1, 0, 0], 1), 3*n + 1)}; /* Michael Somos, Jun 12 2014 */
    
  • Sage
    ModularForms( Gamma0(27), 2, prec=271).0; # Michael Somos, Jun 12 2014
    

Formula

Expansion of q^(-1/3) * b(q) * c(q) / 3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 01 2006
Coefficients of L-series for elliptic curve "27a3": y^2 + y = x^3. - Michael Somos, Aug 13 2006
Euler transform of period 3 sequence [-2, -2, -4, ...]. - Michael Somos, Dec 06 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2.
a(n) = b(3*n + 1) where b(n) is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * (-1)^(e/2) * p^(e/2), if p == 2 (mod 3), otherwise b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)). - Michael Somos, Aug 13 2006
Given g.f. A(x), then B(q)= q*A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 - u*w * (u + 4*w). - Michael Somos, Dec 06 2004
a(4*n + 3) = a(16*n + 13) = 0. - Michael Somos, Oct 19 2005
a(4*n + 1) = -2 * a(n). - Michael Somos, Dec 06 2004
a(25*n + 8) = -5 * a(n). Convolution square of A030203. - Michael Somos, Mar 13 2012

A187076 Coefficients of L-series for elliptic curve "144a1": y^2 = x^3 - 1.

Original entry on oeis.org

1, 4, 2, -8, -5, 4, -10, -8, 9, 0, 14, 16, -10, 4, 0, 8, 14, -20, 2, 0, -11, -20, -32, 16, 0, 4, 14, -8, -9, -20, 26, 0, 2, 28, 0, 16, 16, 28, -22, 0, 14, -16, 0, -40, 0, 28, 26, -32, -17, 0, -32, 16, -22, 0, -10, -32, -34, 8, 14, 0, 45, 4, 38, -8, 0, 0, -34
Offset: 0

Views

Author

Michael Somos, Mar 05 2011

Keywords

Comments

Number 67 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 2*x^2 - 8*x^3 - 5*x^4 + 4*x^5 - 10*x^6 - 8*x^7 + 9*x^8 + ...
G.f. = q + 4*q^7 + 2*q^13 - 8*q^19 - 5*q^25 + 4*q^31 - 10*q^37 - 8*q^43 + 9*q^49 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(144), 2), 398); A[1] + 4*A[7] + 2*A[11] - 8*A[13]; /* Michael Somos, Jan 01 2017 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^4, {x, 0, n}]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, 0, -1], 1), 6*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)))^4, n))};
    
  • PARI
    {a(n) = my(m, A, p, e, x, y, a0, a1); if( n<0, 0, m = 6*n + 1; A = factor(m); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if(e%2, 0, (-p)^(e/2)), for( y=1, sqrtint(p\3), if( issquare(p - 3*y^2, &x), break)); a0 = 1; if( x%6>3, x = -x); a1 = x = 2*x; for( i=2, e, y = x*a1 - p*a0; a0 = a1; a1 = y); a1)))};
    

Formula

Expansion of f(x)^4 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/6) * (eta(q^2)^3 / (eta(q) * eta(q^4)))^4 in powers of q.
Euler transform of period 4 sequence [4, -8, 4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = f(t) where q = exp(2 Pi i t).
a(n) = b(6*n + 1) and b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), b(p) = 0 if p == 5 (mod 6), b(p) = 2 * x where p = x^2 + 3 * y^2 == 1 (mod 6) and x == 4, 5 (mod 6).
G.f.: Product_{k>0} (1 - (-x)^k)^4. a(n) = (-1)^n * A000727(n).
Convolution cube is A209676. - Michael Somos, Jun 10 2015
a(2*n) = A258779(n). a(2*n + 1) = 4 * A187150(n). - Michael Somos, Jun 10 2015

A030188 Expansion of q^(-1/2) * eta(q) * eta(q^2) * eta(q^3) * eta(q^6) in powers of q.

Original entry on oeis.org

1, -1, -2, 0, 1, 4, -2, 2, 2, -4, 0, -8, -1, -1, 6, 8, -4, 0, 6, 2, -6, 4, -2, 0, -7, -2, -2, -8, 4, 4, -2, 0, 4, -4, 8, 8, 10, 1, 0, -8, 1, -4, -4, -6, -6, 0, -8, 8, 2, 4, -18, 16, 0, -12, -2, -6, 18, 16, -2, 0, 5, 6, 12, -8, -4, -4, 0, 2, -6, -12, 0, -8, -12, 7, 14, -16, 2, -16, -2, 2, 0, 12, 8, 24, -9, -4, 6, 0, -4, 12, 6, 2, -12, 8, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Number 43 of the 74 eta-quotients listed in Table I of Martin (1996).
Newform number 1 of degree 1 in Full modular forms space of level 24, weight 2 and trivial character.

Examples

			G.f. = 1 - x - 2*x^2 + x^4 + 4*x^5 - 2*x^6 + 2*x^7 + 2*x^8 - 4*x^9 - 8*x^11 + ...
G.f. = q - q^3 - 2*q^5 + q^9 + 4*q^11 - 2*q^13 + 2*q^15 + 2*q^17 - 4*q^19 + ...
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 415. Exer. 47.3.

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma0(24), 2), 192) [1]; /* Michael Somos, May 27 2014 */
    
  • Magma
    qEigenform( EllipticCurve( [0, -1, 0, 1, 0]), 191); /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2] QPochhammer[ x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A), n))}; /* Michael Somos, Apr 02 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; ellak( ellinit([ 0, -1, 0, -4, 4], 1), n))}; /* Michael Somos, Apr 02 2005 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==3, (-1)^e, a0 = 1; a1 = y = -sum( x=0, p-1, kronecker( x^3 - x^2 - 4*x + 4, p)); for( i=2, e, x = y*a1 - p*a0; a0 = a1; a1 = x); a1)))}; /* Michael Somos, Aug 13 2006 */
    
  • Sage
    CuspForms( Gamma0(24), 2, prec=192).0 # Michael Somos, May 24 2013
    

Formula

Euler transform of period 6 sequence [ -1, -2, -2, -2, -1, -4, ...]. - Michael Somos, Apr 02 2005
Given g.f. A(x), then B(x) = x * A(x)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = u^2 * v * w + 4 * u * v^2 * w + 16 * u * v * w^2 + 4 * u^2 * w^2 - v^4. - Michael Somos, Apr 02 2005
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) otherwise where b(p) = p+1 - number of solutions to y^2 = x^3 - x^2 - 4*x + 4 modulo p including the point at infinity. - Michael Somos, Mar 04 2011
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(6*k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 08 2007
Coefficients of L-series for elliptic curve "24a1": y^2 = x^3 - x^2 - 4*x + 4. - Michael Somos, Apr 02 2005
a(n) = (-1)^n * A159819(n). a(3*n + 1) = -a(n). Convolution square is A030209. - Michael Somos, Mar 13 2012
a(3*n + 2) = -2 * A258090(n). - Michael Somos, May 19 2015

A030204 Expansion of q^(-1/8) * eta(q) * eta(q^2) in powers of q.

Original entry on oeis.org

1, -1, -2, 1, 0, 2, 1, 0, 0, -2, 1, -2, -2, 0, 2, -1, 0, 2, 0, 2, 0, 1, 0, 0, -2, 0, 0, 0, -1, -2, -2, 0, 2, 0, 0, -2, 3, 0, 0, 2, 0, 0, 2, 0, 2, -1, -2, 0, 0, 0, -2, 2, 0, -2, -2, -1, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, 2, 0, 2, -2, 0, -2, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Number 66 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
A030204, A083650 and A138514 are the same except for signs. - N. J. A. Sloane, May 07 2010

Examples

			G.f. = 1 - x - 2*x^2 + x^3 + 2*x^5 + x^6 - 2*x^9 + x^10 - 2*x^11 - 2*x^12 + ...
G.f. = q - q^9 - 2*q^17 + q^25 + 2*q^41 + q^49 - 2*q^73 + q^81 - 2*q^89 - 2*q^97 + ...
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(128), 1), 641)[1]; /* Michael Somos, Jan 31 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Oct 11 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Oct 11 2013 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}]; (* Michael Somos, Oct 11 2013 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, I x] / (4 Sqrt[ x] I^(1/4)), {x, 0, 4 n}]; (* Michael Somos, Oct 11 2013 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, Pi/4, x] / (2^(3/2) x^(1/2)), {x, 0, 4 n}]; (* Michael Somos, Jan 31 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 8*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p%8==1, (e + 1) * if( qfbclassno(-4*p)%8, (-1)^e, 1), e%2==0, (-1)^(e/2*(p%8<5)))))}; /* Michael Somos, Jul 26 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 1; (qfrep([1, 0;0, 32], n) - qfrep([4, 2; 2, 9], n))[n])}; /* Michael Somos, Sep 02 2006 */
    

Formula

G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k)).
G.f.: (Sum_{k>0} x^((k^2 - k)/2)) * (Sum_{k in Z} (-1)^k * x^k^2). - Michael Somos, Sep 02 2006
Expansion of psi(x) * phi(-x) = f(-x^2) * f(-x) = f(-x)^2 / chi(-x) = f(-x)^3 / phi(-x) = f(-x^2)^2 * chi(-x) = f(-x^2)^3 / psi(x) = psi(-x) * phi(-x^2) = psi(x)^2 * chi(-x)^3 = phi(-x)^2 / chi(-x)^3 = (f(-x)^3 * psi(x))^(1/2) = (f(-x^2)^3 * phi(-x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Mar 22 2008
Expansion of psi(x) * psi(-x) in powers of x^2 where psi() is a Ramanujan theta function. - Michael Somos, Oct 11 2013
Euler transform of period 2 sequence [ -1, -2, ...].
a(3*n) = A107063(n). a(3*n + 2) = -2 * A107064(n). - Michael Somos, Oct 11 2013
a(9*n + 1) = -a(n), a(9*n + 4) = a(9*n + 7) = 0. - Michael Somos, Mar 17 2004
a(n) = b(8*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = 0 if p === 3,5,7 (mod 8) and e odd, b(p^e) = (-1)^(e/2) if p == 3 (mod 8) and e even, b(p^e) = 1 if p == 5,7 (mod 8) and e even, b(p^e) = e + 1 if p == 1 (mod 8) and p = x^2 + 32*y^2, b(p^e) = (-1)^e * (e + 1) if p == 1 (mod 8) and p is not of the form x^2 + 32*y^2.
a(n) = (-1)^n * A138514(n). Convolution inverse is A002513.
G.f.: exp(Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A030205 Expansion of q^(-1/2) * eta(q)^2 * eta(q^5)^2 in power of q.

Original entry on oeis.org

1, -2, -1, 2, 1, 0, 2, 2, -6, -4, -4, 6, 1, 4, 6, -4, 0, -2, 2, -4, 6, -10, -1, -6, -3, 12, -6, 0, 8, 12, 2, 2, -2, 2, -12, -12, 2, -2, 0, 8, -11, 6, 6, -12, -6, 4, 8, 4, 2, 0, 6, 14, 4, -6, 2, -4, -6, -6, 2, -12, -11, -12, -1, 2, 20, 0, -8, -4, 18, -4, 12, 0
Offset: 0

Views

Author

Keywords

Comments

This eta-quotient of conductor 20 is one of the twelve weight 2 newforms listed by Martin and Ono.
The associated elliptic curve is "20a1": y^2 = x^3 + x^2 + 4*x + 4 or "20a2": y^2 = x^3 + x^2 - x.
Number 39 of the 74 eta-quotients listed in Table I of Martin (1996).
The mentioned eta-quotient is in fact eta^2(2*z) * eta^2(10*z) with q = exp(2*Pi*i*tau) with Im(tau) > 0, I^2 = -1, with the q-expansion coefficients b(n) from the Michael Somos Oct Aug 13 2006 formula: b(2*n) = 0 and b(2*n+1) = a(n), for n >= 0. A273163(k) = b(prime(k)), k >= 1. See also the comments on multiplicativity of b(n) (called there c(n)) with b(2^k) = b(2)^k = 0, b(5^k) = b(5)^k = (-1)^k, and b(prime(n)^k) = (sqrt(prime(n)))^k*S(k,A273163(n)/sqrt(prime(n))) with Chebyshev's S polynomials (A049310), for n = 2, and n >= 4 and k >= 2. Compare this with the b(p^(e+2)) recurrence given by Michael Somos, Oct 31 2005. - Wolfdieter Lang, May 23 2016

Examples

			G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 2*x^6 + 2*x^7 - 6*x^8 - 4*x^9 - 4*x^10 + ...
G.f. of b(n) from eta^2(2*z)*eta^2(10*z) = q - 2*q^3 - q^5 + 2*q^7 + q^9 + 2*q^13 + 2*q^15 - 6*q^17 - 4*q^19 + ..., where q = exp(2*Pi*I*z).
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma0(20), 2), 145) [1]; /* Michael Somos, May 27 2014 */
    
  • Magma
    A := Basis( CuspForms( Gamma1(20), 2), 145); A[1] - 2*A[3]; /* Michael Somos, May 17 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^5])^2, {x, 0, n}]; (* Michael Somos, May 28 2013 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; ellan( ellinit( [0, 1, 0, 4, 4], 1), n)[n])}; /* Michael Somos, Oct 31 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^5 + A))^2, n))}; /* Michael Somos, Oct 31 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; ellan( ellinit( [0, 1, 0, -1, 0], 1), n)[n])}; /* Michael Somos, Aug 13 2006 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==5, (-1)^e, a0=1; a1 = y = -sum( x=0, p-1, kronecker( x^3 + x^2 - x, p)); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 13 2006 */
    
  • Sage
    CuspForms( Gamma0(20), 2, prec=92).0; # Michael Somos, May 28 2013
    

Formula

Euler transform of period 5 sequence [ -2, -2, -2, -2, -4, ...]. - Michael Somos, Oct 31 2005
Given g.f. A(x), then B(x) = q * A(q)^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u*w * (u + 8*v + 16*w) - v^3. - Michael Somos, Oct 31 2005
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, else b(p^(e+2)) = b(p)*b(p^(e+1)) - p*b(p^e). - Michael Somos, Oct 31 2005
a(n) = b(2*n + 1) and b(p) = p minus number of points of elliptic curve "20a1" or "20a2" modulo p. - Michael Somos, Aug 13 2006
G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(5*k)))^2.
a(121*n + 60) = -11 * a(n).
Convolution square is A030210. - Michael Somos, Jun 13 2014
a(n) = (-1)^n * A159817(n). - Michael Somos, Jun 10 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 20 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 10 2015

A030211 Expansion of q^(-1/2) * (eta(q) * eta(q^2))^4 in powers of q.

Original entry on oeis.org

1, -4, -2, 24, -11, -44, 22, 8, 50, 44, -96, -56, -121, 152, 198, -160, 176, -48, -162, -88, -198, 52, 22, 528, 233, -200, -242, 88, -176, -668, 550, -264, -44, 188, 224, 728, 154, 484, -1056, -656, -311, 236, -100, -792, 714, 528, 640, -88, -478, 484, 1566, -968, 192, -780, -1994, 648, -942
Offset: 0

Views

Author

Keywords

Comments

This is Glaisher's P(n). - N. J. A. Sloane, Nov 24 2018
Number 16 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 4*x - 2*x^2 + 24*x^3 - 11*x^4 - 44*x^5 + 22*x^6 + 8*x^7 + 50*x^8 + ...
G.f. = q - 4*q^3 - 2*q^5 + 24*q^7 - 11*q^9 - 44*q^11 + 22*q^13 + 8*q^15 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340.
  • J. W. L. Glaisher, The arithmetical functions P(m), Q(m), Omega(m). Quart. J. Math, 37 (1906), 36-48.

Crossrefs

Cf. A002171, A134461 (the same except for signs).

Programs

  • Magma
    Basis( CuspForms( Gamma0(8), 4), 115) [1]; /* Michael Somos, May 27 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^2])^4, {x, 0, n}]; (* Michael Somos, May 28 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (eta(x + x * O(x^n)) * eta(x^2 + x * O(x^n)))^4, n))}; /* Michael Somos, Apr 14 2004 */
    
  • PARI
    q='q+O('q^99); Vec((eta(q)*eta(q^2))^4) \\ Altug Alkan, Sep 19 2018
    
  • Sage
    CuspForms( Gamma0(8), 4, prec=115).0; # Michael Somos, May 28 2013
    

Formula

G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(2*k)))^4.
Euler transform of period 2 sequence [ -4, -8, ...]. - Michael Somos, Apr 14 2004
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = (81*u6*u3 + u1*u2) * (u2*u3 + u1*u6) + 30 * u1*u2*u3*u6 - 256 * u2^2*u6^2 - 5 * u2^2*u3^2 - 5 * u1^2*u6^2 - u1^2*u3^2. - Michael Somos, Mar 08 2006
Given A = A0 + A1 + A2 + A3 is the 4-section, then 0 = 8 * A0*A2 * (A0^2 + A2^2) + (A1^2 - A3^2) * (A0^2 - A2^2). - Michael Somos, Mar 08 2006
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) if p>2. - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 64 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, May 28 2013
a(n) = (-1)^n * A134461(n). Convolution square of A002171.
G.f.: exp(4*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A030212 Glaisher's chi_4(n).

Original entry on oeis.org

1, -4, 0, 16, -14, 0, 0, -64, 81, 56, 0, 0, -238, 0, 0, 256, 322, -324, 0, -224, 0, 0, 0, 0, -429, 952, 0, 0, 82, 0, 0, -1024, 0, -1288, 0, 1296, 2162, 0, 0, 896, -3038, 0, 0, 0, -1134, 0, 0, 0, 2401, 1716, 0, -3808, 2482, 0, 0, 0, 0, -328, 0, 0, -6958, 0, 0, 4096, 3332, 0, 0, 5152, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Number 10 of the 74 eta-quotients listed in Table I of Martin (1996). Cusp form level 4 weight 5.
Called chi_4(n) by Glaisher and Hardy because as Glaisher (1907) writes on page 21 "It can be shown (see section 53) that chi_4(n) admits of an arithmetical definition, being in fact equal to one-fourth of the sum of the fourth powers of all complex numbers which have n as norm, viz. chi_4(n) = 1/4 sum_n (a + i b)^4, where a + i b is any number which has n for norm. It is in consequence of this definition that the notation chi_4(n) has been used." - Michael Somos, Jun 18 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 4*q^2 + 16*q^4 - 14*q^5 - 64*q^8 + 81*q^9 + 56*q^10 - 238*q^13 + ...
From _Seiichi Manyama_, Apr 25 2017: (Start)
a(1) = (1 + 0i)^4 = 1,
a(2) = (1 + 1i)^4 = -4,
a(4) = (2 + 0i)^4 = 16,
a(5) = (1 + 2i)^4 + (2 + 1i)^4 = -7 - 24i - 7 + 24i = -14,
a(8) = (2 + 2i)^4 = -64,
a(9) = (3 + 0i)^4 = 81,
a(10) = (1 + 3i)^4 + (3 + 1i)^4 = 28 - 96i + 28 + 96i = 56 (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135 section 9.3. MR0106147 (21 #4881)
  • H. McKean and V. Moll, Elliptic Curves, Cambridge University Press, 1997, page 175, 4.7 Exercise 5. MR1471703 (98g:14032)

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(4), 5), 71) [1]; /* Michael Somos, May 27 2014 */
  • Mathematica
    If[SquaresR[2,#]==0,0,1/4 Plus@@((x+I y)^4/.{ToRules[Reduce[x^2+y^2==#,{x,y},Integers]]})] &/@Range[70] (* Ant King, Nov 10 2012 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4]^2)^2, {q, 0, n}]; (* Michael Somos, May 28 2013 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A))^4 * eta(x^2 + A)^2, n))}; /* Michael Somos, Jul 17 2004 */
    
  • PARI
    {a(n) = local(r); if( n<1, 0, r = sqrtint(n); sum( x=-r, r, sum( y=-r, r, if( x^2 + y^2 == n, (x + I*y)^4) )) / 4 )}; /* Michael Somos, Sep 12 2005 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, z, a0, a1); if( n<0, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, (-4)^e, p%4 == 3, if( e%2, 0, p^(2*e)), forstep( i=0, sqrtint(p), 2, if( issquare( p - i^2, &y), x = i; break)); a0 = 1; a1 = x = real( (x + I*y)^4 ) * 2; for( i=2, e, y = x*a1 - p^4*a0; a0=a1; a1=y); a1))) }; /* Michael Somos, Nov 18 2014 */
    
  • Sage
    CuspForms( Gamma1(4), 5, prec=71).0; # Michael Somos, May 28 2013
    

Formula

Expansion of phi(q)^2 * psi(-q)^8 = chi(q)^6 * psi(-q)^10 = f(q)^3 * psi(-q)^7 = f(-q^2)^6 * psi(-q)^4 = f(-q^2)^10 / chi(q)^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Mar 12 2013
Expansion of eta(q)^4 * eta(q^2)^2 * eta(q^4)^4 in powers of q.
G.f.: x * (Product_{k>0} (1 - x^k)^4 * (1 - x^(2*k))^2 * (1 - x^(4*k))^4).
G.f.: (t*t'' - 3(t')^2) / 2 where t = theta_3(x) (A000122) and t' := x * (dt/dx), t'' := (t')'. - Michael Somos, Nov 08 2005
Euler transform of period 4 sequence [ -4, -6, -4, -10, ...]. - Michael Somos, Jul 17 2004
a(n) is multiplicative with a(2^e) = (-4)^e, a(p^e) = p^(2*e) * (1 + (-1)^e)/2 if p == 3 (mod 4), a(p^e) = a(p) * a(p^(e-1)) - p^4 * a(p^(e-2)) for p == 1 (mod 4) where a(p) = 2 * Re( (x + i*y)^4 ) and p = x^2 + y^2 with even x. - Michael Somos, Nov 18 2014
Given A = A0 + A1 + A2 + A3 is the 4-section, then 0 = (A0^2 - A2^2)^2 + 4 * A0*A2*A1^2. - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 32 (t/i)^5 f(t) where q = exp(2 Pi i t). - Michael Somos, May 28 2013
a(4*n + 3) = 0. - Michael Somos, Mar 12 2013
a(2*n) = -4 * a(n). a(4*n + 1) = A215472(n). - Michael Somos, Sep 05 2013
a(n) = 1/4 * Sum_{a^2 + b^2 = n} (a + bi)^4 = Sum_{a > 0, b >= 0, a^2 + b^2 = n} (a + bi)^4. - Seiichi Manyama, Apr 25 2017

A030184 Expansion of eta(q) * eta(q^3) * eta(q^5) * eta(q^15) in powers of q.

Original entry on oeis.org

1, -1, -1, -1, 1, 1, 0, 3, 1, -1, -4, 1, -2, 0, -1, -1, 2, -1, 4, -1, 0, 4, 0, -3, 1, 2, -1, 0, -2, 1, 0, -5, 4, -2, 0, -1, -10, -4, 2, 3, 10, 0, 4, 4, 1, 0, 8, 1, -7, -1, -2, 2, -10, 1, -4, 0, -4, 2, -4, 1, -2, 0, 0, 7, -2, -4, 12, -2, 0, 0, -8, 3, 10, 10, -1
Offset: 1

Views

Author

Keywords

Comments

Unique cusp form of weight 2 for congruence group Gamma_1(15). - Michael Somos, Aug 11 2011
Coefficients of L-series for elliptic curve "15a8": y^2 + x*y + y = x^3 + x^2 or y^2 + x*y - y = x^3 + x^2 + x. - Michael Somos, Feb 01 2004
Number 32 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - q^2 - q^3 - q^4 + q^5 + q^6 + 3*q^8 + q^9 - q^10 - 4*q^11 + q^12 - 2*q^13 - ...
		

Programs

  • Magma
    Basis( CuspForms( Gamma1(15), 2), 76)[1]; /* Michael Somos, Nov 20 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^3] QPochhammer[ q^5] QPochhammer[ q^15], {q, 0, n}]; (* Michael Somos, Aug 11 2011 *)
  • PARI
    {a(n) = if( n<1, 0, ellak( ellinit([ 1, 1, 1, 0, 0], 1), n))}; /* Michael Somos, Aug 13 2006 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, (-1)^e, p==5, 1, a0=1; a1 = y = -if( p==2, 1, sum(x=0, p-1, kronecker( 4*x^3 + 5*x^2 + 2*x + 1, p))); for(i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 13 2006 */
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^15 + A), n))}; /* Michael Somos, May 02 2005 */
    
  • Sage
    CuspForms( Gamma1(15), 2, prec = 76).0; # Michael Somos, Aug 11 2011
    

Formula

Euler transform of period 15 sequence [ -1, -1, -2, -1, -2, -2, -1, -1, -2, -2, -1, -2, -1, -1, -4, ...]. - Michael Somos, May 02 2005
a(n) is multiplicative with a(5^e) = 1, a(3^e) = (-1)^e, otherwise a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) where a(p) = p minus number of points of elliptic curve modulo p. - Michael Somos, Aug 13 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - u*w* (u + 2*v + 4*w). - Michael Somos, May 02 2005
G.f. A(x) satisfies 2 * A(x^2) = -(A(x) + A(-x) + 4*A(x^4)), A(x^2)^3 = -A(x) * A(-x) * A(x^4). - Michael Somos, Feb 19 2007
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(3*k)) * (1 - x^(5*k)) * (1 - x^(15*k)).
Previous Showing 21-30 of 76 results. Next