cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000727 Expansion of Product_{k >= 1} (1 - x^k)^4.

Original entry on oeis.org

1, -4, 2, 8, -5, -4, -10, 8, 9, 0, 14, -16, -10, -4, 0, -8, 14, 20, 2, 0, -11, 20, -32, -16, 0, -4, 14, 8, -9, 20, 26, 0, 2, -28, 0, -16, 16, -28, -22, 0, 14, 16, 0, 40, 0, -28, 26, 32, -17, 0, -32, -16, -22, 0, -10, 32, -34, -8, 14, 0, 45, -4, 38, 8, 0, 0, -34, -8, 38, 0, -22, -56, 2, -28, 0, 0, -10, 20, 64, -40, -20, 44
Offset: 0

Views

Author

Keywords

Comments

Number 51 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan (see the link, pp. 155 and 157 Nr. 23.) conjectured the expansion coefficients called Psi_4(n) of eta^4(6*z) in powers of q = exp(2*Pi*i*z), Im(z) > 0, where i is the imaginary unit. In the Finch link on p. 5, multiplicity is used and Psi_4(p^r), called f(p^r), is given (see also b(p^e) formula given by Michael Somos, Aug 23 2006). Mordell proved this conjecture on pp. 121-122 based on Klein-Fricke, Theorie der elliptischen Modulfunktionen, 1892, Band II, p. 374. The product formula for the Dirichlet series, Mordell, eq. (7) for a=2,is used to find Psi_4(n), called f_2(n), from f_2(p) for primes p. The primes p = 2 and 3 do not appear in the product. - Wolfdieter Lang, May 03 2016

Examples

			G.f. = 1 - 4*x + 2*x^2 + 8*x^3 - 5*x^4 - 4*x^5 - 10*x^6 + 8*x^7 + 9*x^8 + ...
G.f. = q - 4*q^7 + 2*q^13 + 8*q^19 - 5*q^25 - 4*q^31 - 10*q^37 + 8*q^43 + ...
		

References

  • Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 415. Exer. 47.2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    L000727List(len) = DedekindEta(len, 4)
    L000727List(82) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 0, 0, 1]), 493); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    A := Basis( ModularForms( Gamma0(36), 2), 493); A[2] - 4*A[8]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(36), 2), 493)[1]; /* Michael Somos, May 17 2015 */
    
  • Magma
    Coefficients(&*[(1-x^m)^4:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Mar 10 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -4): seq(a(n), n=0..81); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[-4&]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    nmax = 80; CoefficientList[Series[Sum[Sum[(-1)^(k+m) * (2*k+1) * q^(k*(k+1)/2 + m*(3*m-1)/2), {k, 0, nmax}], {m, -nmax, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Dec 06 2015 *)
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if(e%2, 0, (-1)^(e/2) * p^(e/2)), for( y=1, sqrtint(p\3), if( issquare( p - 3*y^2, &x), break)); a0=1; if( x%3!=1, x=-x); a1 = x = 2*x; for( i=2, e, y = x*a1 - p*a0; a0=a1; a1=y); a1)))}; /* Michael Somos, Aug 23 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff(eta(x + x * O(x^n))^4, n))};
    
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, 0, 1], 1), 6*n + 1))}; /* Michael Somos, Jul 01 2004 */
    
  • Sage
    ModularForms( Gamma0(36), 2, prec=493).0; # Michael Somos, Jun 12 2014
    

Formula

Euler transform of period 1 sequence [-4, -4, ...]. - Michael Somos, Apr 02 2005
Given g.f. A(x), then B(q) = q * A(q^3)^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w*u^2 - v^3 + 16 * u*w^2. - Michael Somos, Apr 02 2005
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), b(p) = 0 if p == 5 (mod 6), b(p) = 2*x where p = x^2 + 3*y^2 == 1 (mod 6) and x == 1 (mod 3). - Michael Somos, Aug 23 2006
Coefficients of L-series for elliptic curve "36a1": y^2 = x^3 + 1. - Michael Somos, Jul 01 2004
a(n) = (-1)^n * A187076(n). a(2*n + 1) = -4 * A187150(n). a(25*n + 9) = a(25*n + 14) = a(25*n + 19) = a(25*n + 24) = 0. a(25*n + 4) = -5 * a(n). Convolution inverse of A023003. Convolution square of A002107. Convolution square is A000731.
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 5 (mod 6). Then a( M^2*n + (M^2 - 1)/6 ) = (-1)^k*M*a(n). See Cooper et al., equation 4. - Peter Bala, Dec 01 2020
a(n) = b(6*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(e+1) - ((x-sqrt(-3)*y)/2)^(e+1))/x if p == 1 (mod 3) where p = x^2 + 3*y^2 and x == 1 (mod 3). - Jianing Song, Mar 19 2022

A272203 P-defects p - N(p) of the congruence y^2 == x^3 - 1 (mod p) for primes p, where N(p) is the number of solutions given by A272202(n).

Original entry on oeis.org

0, 0, 0, 4, 0, 2, 0, -8, 0, 0, 4, -10, 0, -8, 0, 0, 0, 14, 16, 0, -10, 4, 0, 0, 14, 0, -20, 0, 2, 0, -20, 0, 0, 16, 0, 4, 14, -8, 0, 0, 0, 26, 0, 2, 0, 28, 16, 28, 0, -22, 0, 0, 14, 0, 0, 0, 0, 28, 26, 0, -32, 0, 16, 0, -22, 0, -32, -34, 0, 14, 0, 0, 4, 38, -8, 0, 0, -34, 0, 38, 0, -22, 0, 2, 28, 0, 0, -10, 0, -20, 0, 0, -44, 0, -32, 0, 0, 0, -8, -46, 40, 0, 0, 0, 16, -46
Offset: 1

Views

Author

Wolfdieter Lang, May 05 2016

Keywords

Comments

The analysis of this elliptic curve runs along the same lines as in A000727, A272197 and A272198, and it is inspired by the Silverman reference where the curve y^2 = x^3 + 1 modulo primes is treated.
The series showing the modularity pattern is the expansion of the 67th modular cusp form of weight 2 and level N=144, given in the table I of the Martin reference, i.e., eta^{12}(12*z)/( eta^4(6*z)*eta^4(24*z)), symbolically 12^{12} 6^(-4) 24^{-4}, in powers of q = exp(2*Pi*i*z), with Im(z) > 0. Here eta is the Dedekind function. See A187076 for the expansion in powers of q^6 (after deleting a factor q^(1/6)). Note that also for the possibly bad prime 2 and the bad prime 3 this expansion gives the correct numbers 0 (the discriminant of this elliptic curve is -3^3).
See also the comment on the Martin-Ono reference in A272202 which implies that 12^{12} 6^(-4) 24^{-4} provides the modularity sequence for this elliptic curve.
If prime(n) == 1 (mod 3) = A002476(m) (for a unique m = m(n)) then prime(n) = A(m)^2 + 3*B(m)^2 with A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1. In this case (4*prime(n) - a(n)^2)/12, seems to be a square, q(m)^2. In fact is seems that (the positive) q(m) = B(m). If this conjecture is true then a(n) = 2*(+-sqrt(prime(n) - 3*B(m)^2)) = +- 2*A(m) for prime(n) = A002476(m). This leads to a bisection of the primes 1 (mod 3) into two types: type I if the + sign applies, and type II for the - sign. Primes of type I are given in A272204: 7,13,31,61,67, ... and those of type II in A272205: 19,37,43,73,103, ...

Examples

			a(1) = 2 - A272202(1) = 0, and 2 == 2 (mod 3).
a(4) = 7 - A272202(4) = 7 - 3 = +4, and 7 = A002476(1) = 2^2 + 3*1^2, 2 = A001479(1+1), 7 = A272204(1), hence a(4) = +2*2 = +4.
a(8) = 19 - A272202(8) = 19 - 27 = -8, and 19 = A002476(3) = 4^2 + 3*1^2; 4=A001479(3+1), 19 = A272205(1), hence a(8) = 2*(-4) = -8.
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415, and pp. 400 - 402 (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385, and pp. 366 - 368).

Crossrefs

Formula

a(n) = prime(n) - N(prime(n)), n = 1, where N(prime(n)) = A272202(n), the number of solutions of the congruence y^2 == x^3 - 1 (mod prime(n)).
a(n) = 0 for prime(n) == 0, 2 (mod 3) (see A045309).
The above given conjecture for primes 1 (mod 3) is expected to be true by analogy to the case A272198 where only the signs differ.
a(n) = +2*A001479(m+1) if prime(n) == A002476(m) (m is unique) is a prime of A272204 (type I).
a(n) = -2*A001479(m+1) if prime(n) == A002476(m) is from A272205 (type II).
See a comment above for this bisection of the primes 1 (mod 3) into type I and II.

A209676 Expansion of f(x)^12 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 12, 54, 88, -99, -540, -418, 648, 594, -836, 1056, 4104, -209, -4104, -594, -4256, -6480, 4752, -298, -5016, 17226, 12100, -5346, 1296, -9063, 7128, 19494, -29160, -10032, 7668, -34738, -8712, -22572, -21812, 49248, 46872, 67562, -2508, -47520, 76912
Offset: 0

Views

Author

Michael Somos, Mar 11 2012

Keywords

Comments

Number 35 of the 74 eta-quotients listed in Table I of Martin (1996). See g.f. B(q) below: cusp form weight 6 level 16.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 12*x + 54*x^2 + 88*x^3 - 99*x^4 - 540*x^5 - 418*x^6 + 648*x^7 + ...
G.f. B(q) of {b(n)}: q + 12*q^3 + 54*q^5 + 88*q^7 - 99*q^9 - 540*q^11 - 418*q^13 + ...
		

Crossrefs

A000735 is the same except for signs.

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(16), 6), 81); A[1] + 12*A[3] + 54*A[5] + 88*A[7]; /* Michael Somos, Jun 09 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^12, {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)))^12, n))};
    

Formula

Expansion of q^(-1/2) * (eta(q^2)^3 / (eta(q) * eta(q^4)))^12 in powers of q.
Euler transform of period 4 sequence [ 12, -24, 12, -12, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^5 * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 4096 (t/i)^6 f(t) where q = exp(2 Pi i t).
G.f.: (Product_{k>0} (1 - (-x)^k))^12.
a(n) = (-1)^n * A000735(n).
Convolution cube of A187076. Convolution fourth power of A133089. Convolution twelfth power of A121373.

A272205 A bisection of the primes congruent to 1 modulo 3 (A002476). This is the part depending on the corresponding A001479 entry being congruent to 4 or 5 modulo 6.

Original entry on oeis.org

19, 37, 43, 73, 103, 127, 163, 229, 283, 313, 331, 337, 379, 397, 421, 457, 463, 487, 499, 523, 541, 577, 607, 613, 619, 631, 691, 709, 727, 787, 811, 829, 853, 859, 877, 883, 967, 991, 997
Offset: 1

Views

Author

Wolfdieter Lang, May 05 2016

Keywords

Comments

The other part of this bisection appears in A272204.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1. The present sequence gives such primes corresponding to A(m) == 4, 5 (mod 6). The ones corresponding to A(m) == 1, 2 (mod 6) (the complement) are given in A272205.
The corresponding A001479 entries are 4, 5, 4, 5, 10, 10, 4, 11, 16, 11, 16, 17, 4, 17, 11, 5, 10, 22, 16, 4, 23, 23, 10, 5, 16, 22, 4, 11, 22, 28, 28, 23, 29, 28, 17, 4, 10, 22, 5, ...
See A272204 for a comment on the relevance of this bisection in connection with the signs of the q-expansion coefficients of the modular cusp form eta^{12}(12*z) / (eta^4(6*z)*eta^4(24*z)).

Crossrefs

Cf. A001479, A001480, A002476, A047239, A187076, A272203, A272204 (complement relative to A002476).

Formula

This sequence collects the 1 (mod 3) primes p(m) = A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) == 4, 5 (mod 6), for m >= 1. A(m) = A001479(m+1).

A280384 Expansion of f(x)^3 * f(-x^2) * chi(x^3)^3 in powers of x where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, -1, -5, 8, -1, -28, 11, 10, -41, 41, 26, -53, 84, 21, -101, 76, 3, -129, 99, 14, -190, 187, 59, -299, 263, 62, -336, 340, 27, -459, 370, 111, -645, 518, 228, -774, 806, 179, -973, 882, 147, -1233, 955, 291, -1565, 1325, 395, -1883, 1767, 338, -2318, 1994
Offset: 0

Views

Author

Michael Somos, Jan 01 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x - x^2 - 5*x^3 + 8*x^4 - x^5 - 28*x^6 + 11*x^7 + 10*x^8 + ...
G.f. = q^-1 + 3*q^5 - q^11 - 5*q^17 + 8*q^23 - q^29 - 28*q^35 + 11*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 QPochhammer[ x^2] QPochhammer[ -x^3, x^6]^3, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^6 + A)^6 / (eta(x + A)^3 * eta(x^3 + A)^3 * eta(x^4 + A)^3 * eta(x^12 + A)^3), n))};

Formula

Expansion of q * eta(q^12)^10 * eta(q^36)^6 / (eta(q^6)^3 * eta(q^18)^3 * eta(q^24)^3 * eta(q^72)^3) in powers of q^6.
Euler transform of period 12 sequence [3, -7, 6, -4, 3, -10, 3, -4, 6, -7, 3, -4, ...].
a(n) = (-1)^n * A280328(n).
a(5*n + 1) / a(1) == A187076(n) (mod 5). a(125*n + 21) / a(21) == A187076(n) (mod 25).

A258779 Expansion of (f(-x) * phi(x))^2 in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, -5, -10, 9, 14, -10, 0, 14, 2, -11, -32, 0, 14, -9, 26, 2, 0, 16, -22, 14, 0, 0, 26, -17, -32, -22, -10, -34, 14, 45, 38, 0, -34, 38, -22, 2, 0, -10, 64, -20, 0, 0, 0, -23, -46, 16, 0, -46, -32, 26, -10, 25, 18, 0, 38, 50, 0, 0, -22, -80, 50, 0, 26, 2
Offset: 0

Views

Author

Michael Somos, Jun 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x - 5*x^2 - 10*x^3 + 9*x^4 + 14*x^5 - 10*x^6 + 14*x^8 + ...
G.f. = q + 2*q^13 - 5*q^25 - 10*q^37 + 9*q^49 + 14*q^61 - 10*q^73 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] EllipticTheta[ 3, 0, x])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A) * eta(x^4 + A)^2))^2, n))};

Formula

Expansion of q^(-1/12) * (eta(q^2)^5 / (eta(q) * eta(q^4)^2))^2 in powers of q.
Euler transform of period 4 sequence [ 2, -8, 2, -4, ...].
a(n) = A000727(2*n) = A187076(2*n) = A106508(4*n) = A187149(4*n).
Convolution square of A143378.

A272202 Number of solutions of the congruence y^2 == x^3 - 1 (mod p) as p runs through the primes.

Original entry on oeis.org

2, 3, 5, 3, 11, 11, 17, 27, 23, 29, 27, 47, 41, 51, 47, 53, 59, 47, 51, 71, 83, 75, 83, 89, 83, 101, 123, 107, 107, 113, 147, 131, 137, 123, 149, 147, 143, 171, 167, 173, 179, 155, 191, 191, 197, 171, 195, 195, 227, 251, 233, 239, 227, 251, 257, 263, 269, 243, 251, 281
Offset: 1

Views

Author

Wolfdieter Lang, May 05 2016

Keywords

Comments

In the Martin and Ono reference, in Theorem 2, this elliptic curve appears in the last column, starting with Conductor 144, as a strong Weil curve for the weight 2 newform eta^{12}(12*z) / (eta^4(6*z) * eta^4(24*z)), symbolically 12^{12} 6^{-4} 24^{-4}, with Im(z) > 0, and the Dedekind eta function. See A187076 which gives the q-expansion (q = exp(2*Pi*i*z)) of exp(-Pi*i*z/3)* eta(2*z)^{12} / (eta^4(z)*eta^4(4*z)). For the q-expansion of 12^{12} 6^{-4} 24^{-4} one has a leading zero and 5 interspersed 0's: 0,1,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,-8,...
The discriminant of this elliptic curve is -3^3 = -27.
For the elliptic curve y^2 == x^3 + 1 (mod prime(n)) see A000727, A272197, A272198, A272200 and A272201.

Examples

			The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - 1 (mod prime(n)) begin:
n, prime(n), a(n)\ solutions (x, y)
1,    2,      2:   (0, 1), (1, 0)
2,    3,      3:   (1, 0), (2, 1), (2, 2)
3,    5,      5:   (0, 2), (0, 3), (1, 0),
                   (3, 1), (3, 4)
4,    7,      3:   (1, 0), (2, 0), (4, 0)
5,    11,    11:   (1, 0), (3, 2), (3, 9),
                   (5, 5), (5, 6), (7, 1),
                   (7, 10), (8, 4), (8, 7),
                   (10, 3), (10, 8)
...
		

Crossrefs

Formula

a(n) gives the number of solutions of the congruence y^2 == x^3 - 1 (mod prime(n)), n >= 1.

A272204 A bisection of the primes congruent to 1 modulo 3 (A002476). This is the part depending on the corresponding A001479 entry being congruent to 1 or 2 modulo 6.

Original entry on oeis.org

7, 13, 31, 61, 67, 79, 97, 109, 139, 151, 157, 181, 193, 199, 211, 223, 241, 271, 277, 307, 349, 367, 373, 409, 433, 439, 547, 571, 601, 643, 661, 673, 733, 739, 751, 757, 769, 823, 907, 919, 937
Offset: 1

Views

Author

Wolfdieter Lang, May 05 2016

Keywords

Comments

The other part of this bisection appears in A272205.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1. The present sequence gives all such primes corresponding to A(m) == 1, 2 (mod 6). The ones corresponding to A(m) not == 1, 2 (mod 6) (the complement), that is == 4, 5 (mod 6), are given in A272205.
The corresponding A001479 entries are 2, 1, 2, 7, 8, 2, 7, 1, 8, 2, 7, 13, 1, 14, 8, 14, 7, 14, 13, 8, 7, 2, 19, 19, 1, 14, 20, 8, 13, 20, 19, 25, 25, 8, 26, 13, 1, 26, 20, 26, 13, ...
This bisection of the 1 (mod 3) primes A002476 is needed to determine the sign in the formula for the coefficients of the q-expansion (q = exp(2*Pi*i*z), Im(z) > 0) of the modular weight 2 cusp form
eta^{12}(12*z) / (eta^4(6*z)*eta^4(24*z)) |A187076%20which%20gives%20the%20coefficients%20of%20the%20q-expansion%20of%20F(q)%20=%20Eta(q%5E%7B1/6%7D)%20/%20q%5E%7B1/6%7D%20=%20Product">{z=z(q)} =: Eta(q) with Dedekind's eta function. See A187076 which gives the coefficients of the q-expansion of F(q) = Eta(q^{1/6}) / q^{1/6} = Product{m>=0} (1 - q^(2*m))^{12} / ((1 - q^m)*(1 - q^(4*m)))^4. The q-expansion coefficients (called b(n)) of the modular cusp form are given there using multiplicativity. Note that there x can also be negative, whereas here A is positive.

Crossrefs

Cf. A001479, A001480, A002476, A047239, A187076, A272203, A272205 (complement relative to A002476).

Formula

This sequence collects the 1 (mod 3) primes p(m) = A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) == 1, 2 (mod 6), for m >= 1. A(m) = A001479(m+1).
Showing 1-8 of 8 results.