A030277
Shifts left 2 places under COMPOSE transform.
Original entry on oeis.org
1, 1, 1, 2, 4, 10, 28, 86, 286, 1019, 3857, 15418, 64782, 285041, 1309355, 6263085, 31127475, 160432093, 856039863, 4721638083, 26883787141, 157812750656, 953995201996, 5932516347277, 37913110456751, 248768719522450, 1674488577654500, 11553041105489900
Offset: 1
A120976
G.f. A(x) satisfies A(x/A(x)^5) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^5).
Original entry on oeis.org
1, 1, 5, 60, 1060, 23430, 602001, 17281760, 541258390, 18210836060, 651246905140, 24566101401035, 971933892729980, 40156993344526860, 1726753293393763625, 77065076699967844390, 3561820706538663354320, 170162336673835615653925, 8389644485709060522744640
Offset: 0
-
{a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^5))[ #A]);A[n+1]}
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n+k, j)/(5*n+k)*b(n-j, 5*j)));
a(n) = if(n==0, 1, b(n-1, 5)); \\ Seiichi Manyama, Jun 04 2025
Original entry on oeis.org
1, 1, 4, 20, 114, 712, 4772, 33896, 253102, 1975610, 16054568, 135413280, 1182664740, 10675334958, 99437919664, 954581258020, 9433732288486, 95883201181772, 1001411775057322, 10738668800872594, 118151145186400408
Offset: 0
-
{a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,2,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}
Original entry on oeis.org
1, 1, 5, 30, 200, 1435, 10900, 86799, 720074, 6196295, 55135043, 506125404, 4784680169, 46516469860, 464550190798, 4761343733469, 50044839978614, 539051253692777, 5946806890025709, 67156408547628636, 775935817487472046
Offset: 0
-
{a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,3,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}
A182953
G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^3.
Original entry on oeis.org
1, 1, 4, 25, 197, 1797, 18178, 198937, 2318858, 28487593, 366129764, 4896068759, 67843403960, 971032668429, 14319735032679, 217136949146091, 3379973833321141, 53936100582832901, 881318215466710693, 14731508761600217914
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 197*x^4 + 1797*x^5 +...
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 100*x^3 + 801*x^4 + 7296*x^5 + 73174*x^6 +...
A(x*A(x)) = 1 + x + 5*x^2 + 37*x^3 + 333*x^4 + 3389*x^5 + 37634*x^6 +...
A(x*A(x))^3 = 1 + 3*x + 18*x^2 + 142*x^3 + 1311*x^4 + 13461*x^5 +...
The g.f. satisfies:
log(A(x)) = A(x)^3*x + {d/dx x*A(x)^6}*x^2/2! + {d^2/dx^2 x^2*A(x)^9}*x^3/3! + {d^3/dx^3 x^3*A(x)^12}*x^4/4! +...
-
{a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(3*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
-
{a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 3*k))))}
A035049
E.g.f. satisfies A(x) = x*(1+A(A(x))), A(0)=0.
Original entry on oeis.org
1, 2, 12, 144, 2760, 74880, 2676240, 120234240, 6571393920, 426547296000, 32283270835200, 2808028566604800, 277433852555059200, 30836115140589158400, 3824551325912308992000, 525674251444773150720000, 79591811594194480508928000, 13205626859810397006618624000
Offset: 1
-
A:= proc(n) option remember; `if`(n=0, 0, (T-> unapply(
convert(series(x*(1+T(T(x))), x, n+1), polynom), x))(A(n-1)))
end:
a:= n-> coeff(A(n)(x), x, n)*n!:
seq(a(n), n=1..20); # Alois P. Heinz, Aug 23 2008
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(k*
a(j)*b(n-j, k-1)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> `if`(n=0, 1, b(n-1, n)):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 21 2019
-
T[n_, m_] := T[n, m] = If[n == m, 1, m/n*Sum[Sum[T[n-m, i]*Binomial[i-1, k-1]*(-1)^i, {i, k, n-m}]*(-1)^k*Binomial[n+k-1, n-1], {k, 1, n-m}]]; Table[n!*T[n, 1], {n, 1, 16}] (* Jean-François Alcover, Feb 12 2014, after Vladimir Kruchinin *)
-
T(n,m):=if n=m then 1 else m/n*sum(sum(T(n-m,i)*binomial(i-1,k-1)*(-1)^i,i,k,n-m)*(-1)^k*binomial(n+k-1,n-1),k,1,n-m); makelist(n!*T(n,1),n,1,10); /* Vladimir Kruchinin, May 06 2012 */
A196523
G.f. satisfies A(x) = x + x*A(A(A(A(x)))).
Original entry on oeis.org
1, 1, 4, 28, 262, 2944, 37666, 532276, 8151322, 133562194, 2320621222, 42475263136, 814932467836, 16326188799508, 340479903535258, 7373196169450312, 165453350568966163, 3840489521467649158, 92072430090995120044, 2276807696679096394552
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*D;
B = A*(1 + x*E);
C = B*(1 + x*F);
D = C*(1 + x*G);
E = D*(1 + x*H); ...
The solution to the variables in the system of equations are:
A=A(x)/x, B=A(A(x))/x, C=A(A(A(x)))/x, D=A(A(A(A(x))))/x, etc.,
where iterations begin:
A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
A(A(x)) = x + 2*x^2 + 10*x^3 + 77*x^4 + 760*x^5 + 8846*x^6 + 116140*x^7 +...
A(A(A(x))) = x + 3*x^2 + 18*x^3 + 153*x^4 + 1608*x^5 + 19566*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 28*x^3 + 262*x^4 + 2944*x^5 + 37666*x^6 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 40*x^3 + 410*x^4 + 4930*x^5 + 66530*x^6 +...
A(A(A(A(A(A(x)))))) = x + 6*x^2 + 54*x^3 + 603*x^4 + 7752*x^5 + 110484*x^6 +...
ALTERNATE GENERATING METHOD.
The g.f. A(x) equals the sum of products of {3*k}-iterations of A(x):
A(x) = x + x*A_3(x) + x*A_3(x)*A_6(x) + x*A_3(x)*A_6(x)*A_9(x) + x*A_3(x)*A_6(x)*A_9(x)*A_12(x) +...+ Product_{k=0..n} A_{3*k}(x) +...
where A_n(x) = A_{n-1}(A(x)) is the n-th iteration of A(x) with A_0(x)=x.
Related expansions.
x*A_3(x) = x^2 + 3*x^3 + 18*x^4 + 153*x^5 + 1608*x^6 + 19566*x^7 +...
x*A_3(x)*A_6(x) = x^3 + 9*x^4 + 90*x^5 + 1026*x^6 + 13059*x^7 +...
x*A_3(x)*A_6(x)*A_9(x) = x^4 + 18*x^5 + 279*x^6 + 4320*x^7 +...
x*A_3(x)*A_6(x)*A_9(x)*A_12(x) = x^5 + 30*x^6 + 675*x^7 +...
-
Nest[x + x (# /. x -> # /. x -> # /. x -> #) &, O[x], 30][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)
-
/* Define the n-th iteration of function F: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* A(x) results from nested iterations of shifted series: */
-
{a(n)=local(A=x); for(i=1,n, A=x+x*ITERATE(4,A, n)); polcoeff(A, n)}
-
{a(n)=local(A=x); for(i=1,n, A=x+x*sum(m=1,n,prod(k=1,m,ITERATE(3*k,A,n)))); polcoeff(A, n)}
A347080
G.f. A(x) satisfies: A(x) = x + x * A(A(-x)).
Original entry on oeis.org
0, 1, -1, -2, 2, 13, -16, -161, 170, 2647, -1711, -51248, 5711, 1103710, 599246, -25521869, -33907174, 620323849, 1410745127, -15678980390, -53746958146, 411344661913, 1998823108706, -11256049308869, -75003366373495, 323285264486686, 2904292324907387
Offset: 0
A171214
G.f. A(x) satisfies A(x) = x + x*A(A(x/3)) = Sum_{n>=1} a(n)*x^n/3^(n*(n+1)/2).
Original entry on oeis.org
1, 1, 2, 10, 137, 5296, 588365, 190088818, 179954321171, 501722122937995, 4134242130461174144, 100943613343624534183723, 7317423203727305175501741434, 1577227642328692213664066391691150
Offset: 1
G.f.: A(x) = x + x^2/3 + 2*x^3/3^3 + 10*x^4/3^6 + 137*x^5/3^10 + 5296*x^6/3^15 +...+ a(n)*x^n/3^(n(n-1)/2) +...
A(x) = x + x*A(x/3) + x*A(x/3)*A(A(x/3)/3) + x*A(x/3)*A(A(x/3)/3)*A(A(A(x/3)/3)/3) +...
A(A(x)) = x + 2*x^2/3 + 10*x^3/3^3 + 137*x^4/3^6 + 5296*x^5/3^10 +...
SUMS OF SERIES at certain arguments.
A(1) = 1.423879975541542344910599787693637973194...
A(1/3) = 0.373293286580877833612329400906044642790...
A(A(1/3)) = A(1) - 1 = 0.42387997554...
A(A(1)) = 2.387414460111728675082753594461076041830...
A(3) = 3 + 3*A(A(1)) = 10.16224338033518602524826...
-
{a(n)=local(A=x+x^2);for(i=1,n,A=x+x*subst(A,x,subst(A,x,x/3+O(x^n))));3^(n*(n-1)/2)*polcoeff(A,n)}
A182955
G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^5.
Original entry on oeis.org
1, 1, 6, 56, 651, 8671, 126997, 1997798, 33260799, 580270730, 10534337521, 197986746949, 3837397114948, 76473239154148, 1563252546786254, 32716989219013821, 699959257347957763, 15288884723649589585
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 56*x^3 + 651*x^4 + 8671*x^5 +...
Related expansions:
A(x*A(x)) = 1 + x + 7*x^2 + 74*x^3 + 953*x^4 + 13846*x^5 +...
A(x*A(x))^5 = 1 + 5*x + 45*x^2 + 520*x^3 + 6950*x^4 + 102481*x^5 +...
The g.f. satisfies:
log(A(x)) = A(x)^5*x + {d/dx x*A(x)^10}*x^2/2! + {d^2/dx^2 x^2*A(x)^15}*x^3/3! + {d^3/dx^3 x^3*A(x)^20}*x^4/4! +...
-
{a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(5*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
-
{a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 5*k))))}
Comments