cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A030277 Shifts left 2 places under COMPOSE transform.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 28, 86, 286, 1019, 3857, 15418, 64782, 285041, 1309355, 6263085, 31127475, 160432093, 856039863, 4721638083, 26883787141, 157812750656, 953995201996, 5932516347277, 37913110456751, 248768719522450, 1674488577654500, 11553041105489900
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A030266.

Programs

  • Mathematica
    Nest[x + x^2 + x^2 (# /. x -> #) &, O[x], 20][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)

Formula

G.f. A(x) satisfies: A(x) = x + x^2 * (1 + A(A(x))). - Ilya Gutkovskiy, May 10 2019

A120976 G.f. A(x) satisfies A(x/A(x)^5) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^5).

Original entry on oeis.org

1, 1, 5, 60, 1060, 23430, 602001, 17281760, 541258390, 18210836060, 651246905140, 24566101401035, 971933892729980, 40156993344526860, 1726753293393763625, 77065076699967844390, 3561820706538663354320, 170162336673835615653925, 8389644485709060522744640
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^5))[ #A]);A[n+1]}
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n+k, j)/(5*n+k)*b(n-j, 5*j)));
    a(n) = if(n==0, 1, b(n-1, 5)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*B(x)^5 = 1 + (1 + x*C(x)^5 )^5 where B(x) and C(x) satisfy: C(x) = B(x)*B(A(x)-1), B(x) = A(A(x)-1), B(A(x)-1) = A(B(x)-1), B(x/A(x)^5) = A(x), B(x) = A(x*B(x)^5) and B(x) is g.f. of A120977.
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120977.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(5*n+k,j)/(5*n+k) * b(n-j,5*j).
a(n) = b(n-1,5) for n > 0. (End)

A128327 Row 2 of table A128325.

Original entry on oeis.org

1, 1, 4, 20, 114, 712, 4772, 33896, 253102, 1975610, 16054568, 135413280, 1182664740, 10675334958, 99437919664, 954581258020, 9433732288486, 95883201181772, 1001411775057322, 10738668800872594, 118151145186400408
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2007

Keywords

Crossrefs

Cf. A030266; A128325 (table), A128326 (row 1), A128328 (row 3), A128329 (main diagonal).

Programs

  • PARI
    {a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,2,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}

Formula

G.f.: A(x) = 1 + G(G(G(G(x)))) = B(G(x)), where B(x) is the g.f. of A128326 and G(x) = x + x*G(G(x)) is the g.f. of A030266.

A128328 Row 3 of table A128325.

Original entry on oeis.org

1, 1, 5, 30, 200, 1435, 10900, 86799, 720074, 6196295, 55135043, 506125404, 4784680169, 46516469860, 464550190798, 4761343733469, 50044839978614, 539051253692777, 5946806890025709, 67156408547628636, 775935817487472046
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2007

Keywords

Crossrefs

Cf. A030266; A128325 (table), A128326 (row 1), A128327 (row 2), A128329 (main diagonal).

Programs

  • PARI
    {a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,3,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}

Formula

G.f.: A(x) = 1 + G(G(G(G(G(x))))) = B(G(x)), where B(x) is the g.f. of A128327 and G(x) = x + x*G(G(x)) is the g.f. of A030266.

A182953 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^3.

Original entry on oeis.org

1, 1, 4, 25, 197, 1797, 18178, 198937, 2318858, 28487593, 366129764, 4896068759, 67843403960, 971032668429, 14319735032679, 217136949146091, 3379973833321141, 53936100582832901, 881318215466710693, 14731508761600217914
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 197*x^4 + 1797*x^5 +...
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 100*x^3 + 801*x^4 + 7296*x^5 + 73174*x^6 +...
A(x*A(x)) = 1 + x + 5*x^2 + 37*x^3 + 333*x^4 + 3389*x^5 + 37634*x^6 +...
A(x*A(x))^3 = 1 + 3*x + 18*x^2 + 142*x^3 + 1311*x^4 + 13461*x^5 +...
The g.f. satisfies:
log(A(x)) = A(x)^3*x + {d/dx x*A(x)^6}*x^2/2! + {d^2/dx^2 x^2*A(x)^9}*x^3/3! + {d^3/dx^3 x^3*A(x)^12}*x^4/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
    for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(3*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 3*k))))}

Formula

G.f. A(x) satisfies:
* A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(3m+3)} * x^(m+1)/(m+1)! );
* A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(3m)}*x^k]*x^m/m);
which are equivalent.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,3k).
Given g.f. A(x), then G(x) = 1 + x*A(x)^3 satisfies G(x/G(x)) = 1 + x*G(x)^2 and G(x) is the g.f. of A147664.

A035049 E.g.f. satisfies A(x) = x*(1+A(A(x))), A(0)=0.

Original entry on oeis.org

1, 2, 12, 144, 2760, 74880, 2676240, 120234240, 6571393920, 426547296000, 32283270835200, 2808028566604800, 277433852555059200, 30836115140589158400, 3824551325912308992000, 525674251444773150720000, 79591811594194480508928000, 13205626859810397006618624000
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; `if`(n=0, 0, (T-> unapply(
          convert(series(x*(1+T(T(x))), x, n+1), polynom), x))(A(n-1)))
        end:
    a:= n-> coeff(A(n)(x), x, n)*n!:
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 23 2008
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(k*
          a(j)*b(n-j, k-1)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> `if`(n=0, 1, b(n-1, n)):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    T[n_, m_] := T[n, m] = If[n == m, 1, m/n*Sum[Sum[T[n-m, i]*Binomial[i-1, k-1]*(-1)^i, {i, k, n-m}]*(-1)^k*Binomial[n+k-1, n-1], {k, 1, n-m}]]; Table[n!*T[n, 1], {n, 1, 16}] (* Jean-François Alcover, Feb 12 2014, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n=m then 1 else m/n*sum(sum(T(n-m,i)*binomial(i-1,k-1)*(-1)^i,i,k,n-m)*(-1)^k*binomial(n+k-1,n-1),k,1,n-m); makelist(n!*T(n,1),n,1,10); /* Vladimir Kruchinin, May 06 2012 */

Formula

a(n) = n!*T(n,1), T(n,m) = m/n*sum(k=1..n-m, sum(i=k..n-m, T(n-m,i) * C(i-1,k-1)*(-1)^i)*(-1)^k*C(n+k-1,n-1)), n>m, T(n,n)=1. - Vladimir Kruchinin, May 06 2012

Extensions

More terms from Alois P. Heinz, Aug 23 2008

A196523 G.f. satisfies A(x) = x + x*A(A(A(A(x)))).

Original entry on oeis.org

1, 1, 4, 28, 262, 2944, 37666, 532276, 8151322, 133562194, 2320621222, 42475263136, 814932467836, 16326188799508, 340479903535258, 7373196169450312, 165453350568966163, 3840489521467649158, 92072430090995120044, 2276807696679096394552
Offset: 1

Views

Author

Paul D. Hanna, Oct 03 2011

Keywords

Comments

Conjecture: a(n) == 1 (mod 3) for n >= 1. - Paul D. Hanna, Dec 01 2024

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*D;
B = A*(1 + x*E);
C = B*(1 + x*F);
D = C*(1 + x*G);
E = D*(1 + x*H); ...
The solution to the variables in the system of equations are:
A=A(x)/x, B=A(A(x))/x, C=A(A(A(x)))/x, D=A(A(A(A(x))))/x, etc.,
where iterations begin:
A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
A(A(x)) = x + 2*x^2 + 10*x^3 + 77*x^4 + 760*x^5 + 8846*x^6 + 116140*x^7 +...
A(A(A(x))) = x + 3*x^2 + 18*x^3 + 153*x^4 + 1608*x^5 + 19566*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 28*x^3 + 262*x^4 + 2944*x^5 + 37666*x^6 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 40*x^3 + 410*x^4 + 4930*x^5 + 66530*x^6 +...
A(A(A(A(A(A(x)))))) = x + 6*x^2 + 54*x^3 + 603*x^4 + 7752*x^5 + 110484*x^6 +...
ALTERNATE GENERATING METHOD.
The g.f. A(x) equals the sum of products of {3*k}-iterations of A(x):
A(x) = x + x*A_3(x) + x*A_3(x)*A_6(x) + x*A_3(x)*A_6(x)*A_9(x) + x*A_3(x)*A_6(x)*A_9(x)*A_12(x) +...+ Product_{k=0..n} A_{3*k}(x) +...
where A_n(x) = A_{n-1}(A(x)) is the n-th iteration of A(x) with A_0(x)=x.
Related expansions.
x*A_3(x) = x^2 + 3*x^3 + 18*x^4 + 153*x^5 + 1608*x^6 + 19566*x^7 +...
x*A_3(x)*A_6(x) = x^3 + 9*x^4 + 90*x^5 + 1026*x^6 + 13059*x^7 +...
x*A_3(x)*A_6(x)*A_9(x) = x^4 + 18*x^5 + 279*x^6 + 4320*x^7 +...
x*A_3(x)*A_6(x)*A_9(x)*A_12(x) = x^5 + 30*x^6 + 675*x^7 +...
		

Crossrefs

Programs

  • Mathematica
    Nest[x + x (# /. x -> # /. x -> # /. x -> #) &, O[x], 30][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)
  • PARI
    /* Define the n-th iteration of function F: */
    {ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
    /* A(x) results from nested iterations of shifted series: */
    
  • PARI
    {a(n)=local(A=x); for(i=1,n, A=x+x*ITERATE(4,A, n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=x); for(i=1,n, A=x+x*sum(m=1,n,prod(k=1,m,ITERATE(3*k,A,n)))); polcoeff(A, n)}

Formula

G.f.: A(x) = A(A(x))/(1 + A(A(A(A(A(x)))))).
G.f.: A(x) = Series_Reversion[ x/(1 + A(A(A(x)))) ].
G.f.: A(x) = x*F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+3)) for n>0 with F(x,0)=1; further, x*F(x,n) is the n-th iteration of A(x).
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n} A_{3*k}(x), where A_n(x) denotes the n-th iteration of A(x) with A_0(x)=x.

A347080 G.f. A(x) satisfies: A(x) = x + x * A(A(-x)).

Original entry on oeis.org

0, 1, -1, -2, 2, 13, -16, -161, 170, 2647, -1711, -51248, 5711, 1103710, 599246, -25521869, -33907174, 620323849, 1410745127, -15678980390, -53746958146, 411344661913, 1998823108706, -11256049308869, -75003366373495, 323285264486686, 2904292324907387
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = x + x A[A[-x]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

A171214 G.f. A(x) satisfies A(x) = x + x*A(A(x/3)) = Sum_{n>=1} a(n)*x^n/3^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 2, 10, 137, 5296, 588365, 190088818, 179954321171, 501722122937995, 4134242130461174144, 100943613343624534183723, 7317423203727305175501741434, 1577227642328692213664066391691150
Offset: 1

Views

Author

Paul D. Hanna, Dec 08 2009

Keywords

Comments

More generally, if F(x) = x + x*F(F(qx)), then
F(x) = x + x*F(qx) + x*F(qx)*F(qF(qx)) + x*F(qx)*F(qF(qx))*F(qF(qF(qx))) +...
with a simple solution at q=1/2:
F(x) = x/(1-x/2) satisfies F(x) = x + x*F(F(x/2)).
At q=1, F(x,q=1) is the g.f. of A030266.
QUESTIONS regarding convergence of F(x,q) as a power series in x.
(1) What is Q, the maximum q below which a radius of convergence exists? Is Q=1?
(2) What is the radius of convergence for a given q < Q?

Examples

			G.f.: A(x) = x + x^2/3 + 2*x^3/3^3 + 10*x^4/3^6 + 137*x^5/3^10 + 5296*x^6/3^15 +...+ a(n)*x^n/3^(n(n-1)/2) +...
A(x) = x + x*A(x/3) + x*A(x/3)*A(A(x/3)/3) + x*A(x/3)*A(A(x/3)/3)*A(A(A(x/3)/3)/3) +...
A(A(x)) = x + 2*x^2/3 + 10*x^3/3^3 + 137*x^4/3^6 + 5296*x^5/3^10 +...
SUMS OF SERIES at certain arguments.
A(1) = 1.423879975541542344910599787693637973194...
A(1/3) = 0.373293286580877833612329400906044642790...
A(A(1/3)) = A(1) - 1 = 0.42387997554...
A(A(1)) = 2.387414460111728675082753594461076041830...
A(3) = 3 + 3*A(A(1)) = 10.16224338033518602524826...
		

Crossrefs

Cf. A171212 (q=2), A171213 (q=3), A030266 (q=1).

Programs

  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x+x*subst(A,x,subst(A,x,x/3+O(x^n))));3^(n*(n-1)/2)*polcoeff(A,n)}

A182955 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^5.

Original entry on oeis.org

1, 1, 6, 56, 651, 8671, 126997, 1997798, 33260799, 580270730, 10534337521, 197986746949, 3837397114948, 76473239154148, 1563252546786254, 32716989219013821, 699959257347957763, 15288884723649589585
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 56*x^3 + 651*x^4 + 8671*x^5 +...
Related expansions:
A(x*A(x)) = 1 + x + 7*x^2 + 74*x^3 + 953*x^4 + 13846*x^5 +...
A(x*A(x))^5 = 1 + 5*x + 45*x^2 + 520*x^3 + 6950*x^4 + 102481*x^5 +...
The g.f. satisfies:
log(A(x)) = A(x)^5*x + {d/dx x*A(x)^10}*x^2/2! + {d^2/dx^2 x^2*A(x)^15}*x^3/3! + {d^3/dx^3 x^3*A(x)^20}*x^4/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
    for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(5*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 5*k))))}

Formula

G.f. A(x) satisfies:
* A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(5m+5)} * x^(m+1)/(m+1)! );
* A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(5m)}*x^k]*x^m/m);
which are equivalent.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,5k).
Previous Showing 21-30 of 44 results. Next