cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A167517 Emirps (A007500) which are concatenation of three consecutive primes (A030469).

Original entry on oeis.org

353359367, 193319491951, 334733593361, 344934573461, 346734693491, 732173317333, 902990419043, 104591046310477, 133091331313327, 141591417314177, 146571466914683, 150131501715031, 154431545115461
Offset: 1

Views

Author

Jonathan vos Post and M. F. Hasler, Nov 10 2009

Keywords

Comments

A subsequence of A007500, A030469, A132903.

Programs

  • PARI
    for(i=1,9999, isprime(eval(p=Str(prime(i),prime(i+1),prime(i+2)))) & isprime(eval(concat(vecextract(Vec(p),"-1..1"))))& print1(p,", "))

Formula

A167517 = A007500 n A030469 = A007500 n A132903 (where "n" means intersection).

A086041 Primes that are concatenations of 5 consecutive primes.

Original entry on oeis.org

711131719, 4753596167, 5359616771, 6771737983, 97101103107109, 101103107109113, 149151157163167, 401409419421431, 431433439443449, 479487491499503, 487491499503509, 757761769773787, 827829839853857
Offset: 1

Views

Author

Chuck Seggelin, Jul 07 2003

Keywords

Examples

			a(1)=711131719 because 711131719 is prime and the concatenation of 7, 11, 13, 17 and 19.
		

Crossrefs

A030997 Smallest prime which is a concatenation of n consecutive primes.

Original entry on oeis.org

2, 23, 5711, 2357, 711131719, 113127131137139149, 29313741434753, 107109113127131137139149, 211223227229233239241251257, 691701709719727733739743751757, 2329313741434753596167
Offset: 1

Views

Author

Keywords

Examples

			a(5) = 711131719 is the smallest prime which is the concatenation of five consecutive primes 7, 11, 13, 17 and 19.
		

Crossrefs

Cf. A030461 (primes that are concatenations of two primes), A030469 (three primes), A030473 (four primes), A086041 (five primes).

Programs

  • PARI
    for(k=1,19, for(i=0,1e9, isprime( eval( p=concat( vector( k,j,Str( prime( i+j )))))) & break); print1(p,", ")) \\ M. F. Hasler, Nov 10 2009

A030473 Primes which are concatenations of 4 consecutive primes.

Original entry on oeis.org

2357, 67717379, 838997101, 139149151157, 149151157163, 383389397401, 503509521523, 557563569571, 577587593599, 587593599601, 601607613617, 613617619631, 727733739743, 937941947953, 1181118711931201
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    P:= select(isprime,[2,seq(p,p=3..10^4,2)]):
    select(isprime,[seq(P[i+3]+10^(1+ilog10(P[i+3]))*P[i+2] + 10^(2+ilog10(P[i+3])+ilog10(P[i+2]))*P[i+1] + 10^(3+ilog10(P[i+3])+ilog10(P[i+2])+ilog10(P[i+1]))*P[i], i=1..nops(P)-3)]); # Robert Israel, Apr 14 2016

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A174031 The smallest integer k>0 such that the double-concatenation prime(n) // prime(n+1) // k is a prime number.

Original entry on oeis.org

3, 3, 1, 19, 1, 1, 1, 1, 1, 1, 9, 11, 11, 17, 3, 1, 1, 3, 11, 17, 21, 19, 1, 7, 37, 7, 23, 37, 7, 1, 7, 7, 7, 11, 7, 33, 29, 31, 1, 13, 11, 17, 7, 11, 11, 9, 9, 1, 7, 7, 1, 13, 11, 19, 67, 1, 13, 21, 49, 13, 13, 1, 1, 23, 1, 1, 29, 1, 29, 7
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 06 2010

Keywords

Comments

Leading zeros in k are not allowed.
All entries k are odd with final digit 1, 3, 7 or 9.
Dirichlet's prime number theorem for arithmetic progressions says that the sequence is infinite.
Conjecture: 1 appears infinitely often.

Examples

			n=1: 2//3//1 = 231 = 3 * 7 * 11 is not prime, so k<>1. 233 = prime(51), therefore 3 is the first entry.
n=2: 3//5//1 = 351 = 3^3 * 13 is not prime, so k <> 1, but 353 = prime(71), therefore 3 is the second entry.
n=30: 113//127//1 = 1131271 = prime(87976), so the 30th entry is 1.
		

Crossrefs

Programs

  • Maple
    read("transforms") ;
    A174031 := proc(n) for e from 1 do if isprime(digcatL([ithprime(n),ithprime(n+1),e])) then return e ; end if; end do: end proc:

Extensions

Entries checked; replaced variables by OEIS standard names - R. J. Mathar, Nov 17 2010

A099727 Concatenations of six consecutive primes forming a prime.

Original entry on oeis.org

113127131137139149, 569571577587593599, 727733739743751757, 733739743751757761, 739743751757761769, 102110311033103910491051, 105110611063106910871091, 110911171123112911511153, 118111871193120112131217, 138113991409142314271429
Offset: 1

Views

Author

Ray G. Opao, Nov 07 2004

Keywords

Examples

			The prime 113127131137139149 is a concatenation of the consecutive primes 113, 127, 131, 137, 139 and 149.
		

Crossrefs

Programs

  • Maple
    select(isprime, [seq(parse(cat([seq(ithprime(i), i=n+0..n+5)][])), n=1..500)])[]; # K. D. Bajpai, Mar 24 2014
  • Mathematica
    Select[FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[Prime[Range[ 300]],6,1],PrimeQ] (* Harvey P. Dale, Apr 30 2020 *)

A173291 Smallest prime p such that the concatenation of p and prime(n) is a prime, or 0 if no other number exists.

Original entry on oeis.org

0, 2, 0, 3, 2, 3, 3, 7, 2, 2, 3, 3, 2, 7, 3, 3, 3, 7, 3, 2, 3, 3, 2, 3, 3, 5, 7, 5, 3, 2, 7, 2, 2, 19, 11, 7, 19, 3, 3, 9, 2, 3, 3, 7, 5, 37, 7, 31, 5, 3, 5, 2, 13, 2, 3, 41, 2, 3, 31, 2, 7, 2, 3, 2, 3, 11, 3, 13, 2, 7, 11, 3, 13, 3, 19, 2, 2, 13, 17, 37, 5, 13, 5, 3, 139, 5, 3, 3, 3, 3, 2, 5, 7, 3, 3
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 15 2010

Keywords

Comments

If prime(n) has k digits then a(k) is the smallest prime(m) where 10^k * prime(m) + prime(n) is a prime.
In base 10, no prime can be prefixed to 2 or 5 to make another prime.

Examples

			a(2) = 2 because prime(2) = 3, and the concatenation of 2 and 3 gives the prime 23.
a(3) = 0 because prime(3) = 5 and there is no prime to concatenate with to give another prime.
a(4) = 3 because prime(5) = 7 but the concatenation with 2 gives 27 = 3^3, so it has to be 3 in order to give 37, which is prime.
		

References

  • John Derbyshire, Prime obsession. Joseph Henry Press, Washington, DC 2003
  • Marcus du Sautoy, Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004
  • Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005

Crossrefs

A174034 The smallest prime p such that the double-concatenation prime(n) // prime(n+1) // p is a prime number.

Original entry on oeis.org

3, 3, 7, 19, 17, 7, 17, 7, 3, 23, 11, 11, 11, 17, 3, 3, 7, 3, 11, 17, 29, 19, 13, 7, 37, 7, 23, 37, 7, 23, 7, 7, 7, 11, 7, 53, 29, 31, 31, 13, 11, 17, 7, 11, 11, 29, 23, 47, 7, 7, 7, 13, 11, 19, 67, 19, 13, 101, 59, 13, 13, 31, 17, 23, 7, 13, 29, 73, 29, 7
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 06 2010

Keywords

Comments

It is conjectured that a(n) = 3 for infinitely many n.

Examples

			n=1: 2 // 3 // 3 = 233, which is prime, so a(1) = 3.
n=2: 3 // 5 // 2 = 352, which is not prime, but 3 // 5 // 3 = 353 is, so a(2) = 3.
		

Crossrefs

Programs

  • PARI
    A174034(n)={ n=eval(Str(prime(n),prime(n+1))); for( d=1,99, n*=10; forprime( p=10^(d-1),10^d, isprime(n+p) & return(p)))} \\ M. F. Hasler, Dec 01 2010
  • Sage
    concat = lambda xx: Integer(''.join(map(str,xx)))
    A174034 = lambda x: next((p for p in Primes() if is_prime(concat([nth_prime(x), nth_prime(x+1), p])))) # D. S. McNeil, Dec 02 2010
    

Extensions

Edited and terms checked by D. S. McNeil, Dec 01 2010

A239789 Primes which are a concatenation of prime(k), prime(k+2) and prime(k+4) for some k.

Original entry on oeis.org

172331, 233141, 717989, 137149157, 191197211, 197211227, 223229239, 229239251, 257269277, 331347353, 353367379, 359373383, 467487499, 521541557, 617631643, 619641647, 647659673, 677691709, 733743757, 787809821, 797811823, 103310491061, 106110691091, 109711091123
Offset: 1

Views

Author

K. D. Bajpai, Mar 26 2014

Keywords

Examples

			172331 is a prime and appears in the sequence because it is the concatenation of prime(7), prime(7+2) and prime(7+4).
233141 is a prime and appears in the sequence because it is the concatenation of prime(9), prime(9+2) and prime(9+4).
		

Crossrefs

Programs

  • Maple
    with(StringTools): KD := proc() local a,b,d,e; a:=ithprime(n); b:=ithprime(n+2); d:=ithprime(n+4);
    e:= parse(cat(a,b,d)); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[Prime[n]], IntegerDigits[Prime[n+2]], IntegerDigits[Prime[n+4]]}]], {n,1,500}],PrimeQ]

A244007 Semiprimes which are concatenation of three consecutive primes.

Original entry on oeis.org

235, 71113, 192329, 232931, 293137, 535961, 616771, 677173, 737983, 798389, 838997, 107109113, 137139149, 149151157, 181191193, 191193197, 211223227, 223227229, 233239241, 257263269, 269271277, 277281283, 337347349, 349353359, 373379383, 421431433, 431433439
Offset: 1

Views

Author

K. D. Bajpai, Jun 17 2014

Keywords

Comments

The semiprimes in A132903.

Examples

			235 is in the sequence because concatenation of [2, 3, 5] = 235 = 5 * 47, which is semiprime.
71113 is in the sequence because concatenation of [7, 11, 13] = 71113 = 7 * 10159, which is semiprime.
111317 is not in the sequence because, though 111317 is concatenation of three consecutive primes [11, 13, 17], but it is not semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(StringTools): A244007:= proc() local a,b,c,k,m; a:=ithprime(n); b:=ithprime(n+1); c:=ithprime(n+2);m:=parse(cat(a,b,c)); k:=bigomega(m); if (k)=2 then RETURN (m); fi; end: seq(A244007 (), n=1..100);
  • Mathematica
    A244007 = {}; Do[t = FromDigits[Flatten[IntegerDigits /@ {Prime[n], Prime[n + 1], Prime[n + 2]}]]; If  [PrimeOmega[t] == 2,  AppendTo[A244007, t]], {n, 100}]; A244007
Showing 1-10 of 17 results. Next