cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 82 results. Next

A030627 Numbers with 9 divisors.

Original entry on oeis.org

36, 100, 196, 225, 256, 441, 484, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6561, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^8 (8th row of A120458) or p^2*r^2 (A085986), where p and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Mathematica
    Select[Range[90000],DivisorSigma[0,#]==9&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==9 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A030627(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=isqrt(x))))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(isqrt(s)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n)) = 9. - Juri-Stepan Gerasimov, Oct 10 2009
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(8) = 0.0678286..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A139572 Numbers with 37 divisors.

Original entry on oeis.org

68719476736, 150094635296999121, 14551915228366851806640625, 2651730845859653471779023381601, 30912680532870672635673352936887453361, 12646218552730347184269489080961456410641
Offset: 1

Views

Author

Omar E. Pol, May 07 2008

Keywords

Comments

36th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n) = A000040(n)^(37-1) = A000040(n)^36.

Extensions

More terms from R. J. Mathar, Feb 05 2010

A133528 Sum of sixth powers of four consecutive primes.

Original entry on oeis.org

134067, 1905564, 6731644, 30853588, 77781820, 224046148, 814042660, 1677408772, 4196089300, 8798157652, 14524697380, 24416409028, 44015043748, 81445473148, 126644484460, 206323651300, 312259574092, 421413266740
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=134067 because 2^6+3^6+5^6+7^6=134067.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a, {n, 1, 100}]

Formula

a(n) = A133533(n) + A030516(n+3). - Michel Marcus, Nov 08 2013

A139574 Numbers with 43 divisors.

Original entry on oeis.org

4398046511104, 109418989131512359209, 227373675443232059478759765625, 311973482284542371301330321821976049, 54763699237492901685126120802225273763666521, 61040881526285814362156628321386486455989674569
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

42nd powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n)=A000040(n)^(43-1)=A000040(n)^42.

Extensions

More terms from R. J. Mathar, May 11 2008

A072499 Product of divisors of n which are <= n^(1/2).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 8, 1, 6, 1, 8, 3, 2, 1, 24, 5, 2, 3, 8, 1, 30, 1, 8, 3, 2, 5, 144, 1, 2, 3, 40, 1, 36, 1, 8, 15, 2, 1, 144, 7, 10, 3, 8, 1, 36, 5, 56, 3, 2, 1, 720, 1, 2, 21, 64, 5, 36, 1, 8, 3, 70, 1, 1152, 1, 2, 15, 8, 7, 36, 1, 320, 27, 2, 1, 1008, 5, 2, 3, 64, 1
Offset: 1

Views

Author

Amarnath Murthy, Jul 20 2002

Keywords

Comments

a(1) = 1 and a(24) = 24. For each pair of primes p,q such that p < q < p^2, if n = p^3*q, then a(n) = n. There are others as well; e.g., a(40) = 40. - Don Reble, Aug 02 2002
Row products of the table in A161906. - Reinhard Zumkeller, Mar 08 2013
It appears that the fixed points belong to 3 categories: p^6 (A030516), p^3*q, or p*q*r. - Michel Marcus, May 16 2014

Examples

			a(20) = 8. The divisors of 20 are 1,2,4,5,10 and 20. a(20) = 1*2*4 = 8.
		

Crossrefs

Programs

  • Haskell
    a072499 = product . a161906_row  -- Reinhard Zumkeller, Mar 08 2013
    
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], #^2 <= n &]; Array[a, 100] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    a(n) = my(d = divisors(n)); prod(i=1, #d, if (d[i]^2 <= n, d[i], 1)); \\ Michel Marcus, May 16 2014
    
  • Python
    from math import prod
    from itertools import takewhile
    from sympy import divisors
    def A072499(n): return prod(takewhile(lambda x:x**2<=n,divisors(n))) # Chai Wah Wu, Dec 19 2023

Extensions

More terms from Sascha Kurz, Feb 02 2003

A139573 Numbers with 41 divisors.

Original entry on oeis.org

1099511627776, 12157665459056928801, 9094947017729282379150390625, 6366805760909027985741435139224001, 452592555681759518058893560348969204658401
Offset: 1

Views

Author

Omar E. Pol, May 07 2008

Keywords

Comments

40th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n)=A000040(n)^(41-1)=A000040(n)^40.

Extensions

More terms from Jon E. Schoenfield, May 18 2010

A139575 Numbers with 47 divisors.

Original entry on oeis.org

70368744177664, 8862938119652501095929, 142108547152020037174224853515625, 749048330965186233494494102694564493649, 801795320536133573571931534665380233173841533961
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

46th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n)=A000040(n)^(47-1)=A000040(n)^46.

Extensions

More terms from R. J. Mathar, May 11 2008

A067004 Number of numbers <= n with same number of divisors as n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 5, 1, 6, 4, 5, 1, 7, 2, 8, 3, 6, 7, 9, 1, 3, 8, 9, 4, 10, 2, 11, 5, 10, 11, 12, 1, 12, 13, 14, 3, 13, 4, 14, 6, 7, 15, 15, 1, 4, 8, 16, 9, 16, 5, 17, 6, 18, 19, 17, 1, 18, 20, 10, 1, 21, 7, 19, 11, 22, 8, 20, 2, 21, 23, 12, 13, 24, 9, 22, 2, 2, 25, 23, 3, 26, 27
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(10)=3 since 6,8,10 each have four divisors. a(11)=5 since 2,3,5,7,11 each have two divisors.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    R:= Vector(N):
    for n from 1 to N do
      v:= numtheory:-tau(n);
      R[v]:= R[v]+1;
      A[n]:= R[v];
    od:
    seq(A[n],n=1..N); # Robert Israel, May 04 2015
  • Mathematica
    b[_] = 0;
    a[n_] := a[n] = With[{t = DivisorSigma[0, n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    a(n)=my(d=numdiv(n)); sum(k=1,n,numdiv(k)==d) \\ Charles R Greathouse IV, Sep 02 2015

Formula

Ordinal transform of A000005. - Franklin T. Adams-Watters, Aug 28 2006
a(A000040(n)^(p-1)) = n if p is prime. - Robert Israel, May 04 2015

A173533 Numbers with 53 divisors.

Original entry on oeis.org

4503599627370496, 6461081889226673298932241, 2220446049250313080847263336181640625, 88124787089723195184393736687912818113311201, 1420429319844313329730664601483335671261683881745483121, 8415003868347247618489696679505181495471801448798649088081
Offset: 1

Views

Author

Omar E. Pol, Oct 16 2010

Keywords

Comments

52nd powers of primes.
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime.

Crossrefs

Programs

Formula

a(n) = A000040(n)^(53-1) = A000040(n)^52.

A182944 Square array A(i,j), i >= 1, j >= 1, of prime powers prime(i)^j, by descending antidiagonals.

Original entry on oeis.org

2, 4, 3, 8, 9, 5, 16, 27, 25, 7, 32, 81, 125, 49, 11, 64, 243, 625, 343, 121, 13, 128, 729, 3125, 2401, 1331, 169, 17, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2010

Keywords

Comments

We alternatively refer to this sequence as a triangle T(.,.), with T(n,k) = A(k,n-k+1) = prime(k)^(n-k+1).
The monotonic ordering of this sequence, prefixed by 1, is A000961.
The joint-rank array of this sequence is A182869.
Main diagonal gives A062457. - Omar E. Pol, Sep 11 2018

Examples

			Square array A(i,j) begins:
  i \ j: 1      2      3      4      5  ...
  ---\-------------------------------------
  1:     2,     4,     8,    16,    32, ...
  2:     3,     9,    27,    81,   243, ...
  3:     5,    25,   125,   625,  3125, ...
  4:     7,    49,   343,  2401, 16807, ...
  ...
The triangle T(n,k) begins:
  n\k:  1     2     3     4     5     6  ...
  1:    2
  2:    4     3
  3:    8     9     5
  4:   16    27    25     7
  5:   32    81   125    49    11
  6:   64   243   625   343   121    13
  ...
		

Crossrefs

Cf. A000961, A006939 (row products of triangle), A062457, A182945, A332979 (row maxima of triangle).
Columns: A000040 (1), A001248 (2), A030078 (3), A030514 (4), A050997 (5), A030516 (6), A092759 (7), A179645 (8), A179665 (9), A030629 (10).
A319075 extends the array with 0th powers.
Subtable of A242378, A284457, A329332.

Programs

  • Mathematica
    TableForm[Table[Prime[n]^j,{n,1,14},{j,1,8}]]

Formula

From Peter Munn, Dec 29 2019: (Start)
A(i,j) = A182945(j,i) = A319075(j,i).
A(i,j) = A242378(i-1,2^j) = A329332(2^(i-1),j).
A(i,i) = A062457(i).
(End)

Extensions

Clarified in respect of alternate reading as a triangle by Peter Munn, Aug 28 2022
Previous Showing 11-20 of 82 results. Next