cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A055728 Number of prime lucky numbers <10^n.

Original entry on oeis.org

0, 2, 9, 43, 211, 1300, 8616, 62446, 469146, 3656784, 29285501, 239911086
Offset: 0

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Examples

			a(2) = 9 since there are 9 prime numbers in the lucky number sequence A000959 that are less than 10^2 (3, 7, 13, 31, 37, 43, 67, 73, and 79).
		

Crossrefs

Programs

  • Mathematica
    lst = Range[1, 10^8, 2]; i = 2; While[ i <= (len = Length@lst) && (k = lst[[i]]) <= len, lst = Drop[lst, {k, len, k}]; i++ ]; Table[Length@ Select[lst, PrimeQ@# && # < 10^n &], {n, 0, 8}] (* Robert G. Wilson v, May 12 2006 *)

Extensions

a(7)-a(8) from Robert G. Wilson v, May 12 2006
a(9) from Donovan Johnson, Jul 06 2010
a(10) from Kevin P. Thompson, Nov 22 2021
a(11) from Dana Jacobsen, Mar 08 2023

A117708 Numbers that are both lucky numbers and Chen primes.

Original entry on oeis.org

3, 7, 13, 31, 37, 67, 127, 211, 307, 409, 487, 541, 577, 631, 769, 787, 937, 991, 1009, 1039, 1117, 1201, 1291, 1459, 1471, 1567, 1777, 1801, 2251, 2281, 2467, 2557, 2647, 2971, 3037, 3187, 3259, 3307, 3559, 3709, 3847, 3889, 4441, 4567, 4801, 4969, 4987
Offset: 1

Views

Author

Jani Melik, Apr 27 2006

Keywords

Crossrefs

Intersection of A000959 and A109611.
Subsequence of A031157.

Programs

  • Mathematica
    lst = Range[1, 5000, 2]; i = 2; While[ i <= (len = Length@lst) && (k = lst[[i]]) <= len, lst = Drop[lst, {k, len, k}]; i++ ]; chenQ[n_] := PrimeQ[n] && Plus @@ Last /@ FactorInteger[n + 2] < 3; Select[lst, chenQ@# &] (* Robert G. Wilson v, May 12 2006 *)

Extensions

Corrected and extended by Robert G. Wilson v, May 12 2006

A129864 Numbers that are both lucky and emirp.

Original entry on oeis.org

13, 31, 37, 73, 79, 739, 769, 937, 991, 1009, 1021, 1201, 1231, 1249, 1471, 1597, 1723, 1831, 1879, 1933, 3049, 3109, 3121, 3163, 3301, 3433, 3571, 3613, 3697, 3889, 7207, 7321, 7459, 7507, 7603, 7687, 7717, 7951, 7963, 9349, 9403, 9421, 9547, 9613, 9643
Offset: 1

Views

Author

Jonathan Vos Post, May 23 2007

Keywords

Examples

			a(9) = 1009 because 1009 is a lucky number A000959(154) and 1009 is an emirp because 1009 is prime and R(1009) = 9001 is prime.
		

Crossrefs

Programs

  • Mathematica
    L = Table[2*i + 1, {i, 0,5* 10^3}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]];Select[L,PrimeQ[#]&&PrimeQ[IntegerReverse[#]]&&IntegerReverse[#]!=#&] (* James C. McMahon, Feb 02 2025 *)

Formula

Intersection of A000959 and A006567.

Extensions

Corrected and extended by R. J. Mathar, Jun 12 2007

A166744 Unlucky primes: numbers which are members of both A000040 (primes) and A050505 (unlucky).

Original entry on oeis.org

2, 5, 11, 17, 19, 23, 29, 41, 47, 53, 59, 61, 71, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 157, 167, 173, 179, 181, 191, 197, 199, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 293, 311, 313, 317, 337, 347, 353, 359, 373, 379, 383, 389
Offset: 1

Views

Author

Gabriel Finch (salsaman(AT)xs4all.nl), Oct 21 2009

Keywords

Comments

There are infinitely many unlucky prime numbers, in particular all those of the form 6n - 1, eliminated in the second step of Ulam's procedure for lucky numbers. - Davide Rotondo, Aug 31 2020

Crossrefs

Cf. A007528, A031157 (lucky primes).

Programs

  • Maple
    L:= [seq(2*i+1, i=0..10^3)]:
    for n from 2 while n < nops(L) do
      r:= L[n];
      L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
    od:
    U:= {2, seq(i,i=3..2*10^3+1,2)} minus convert(L,set):
    sort(convert(select(isprime,U),list)); # Robert Israel, Jul 26 2019
  • SageMath
    # Copy from  A000959 - (Robert FERREOL, Nov 19 2014)
    def lucky(n):
      L=list(range(1, n+1, 2)); j=1
      while L[j] <= len(L)-1:
        L=[L[i] for i in range(len(L)) if (i+1)%L[j]!=0]
        j+=1
      return(L)
    [ p for p in prime_range(1000) if p not in lucky(1000) ] # Hauke Löffler, Jul 26 2019

A225322 Lucky numbers that are prime powers.

Original entry on oeis.org

1, 9, 25, 49, 169, 289, 361, 529, 729, 841, 961, 1369, 2187, 2209, 3481, 3721, 5041, 7921, 9409, 10609, 24649, 29791, 32041, 32761, 36481, 50653, 52441, 66049, 73441, 83521, 113569, 121801, 128881, 130321, 167281, 175561, 185761, 226981, 292681, 300763, 323761
Offset: 1

Views

Author

Alex Ratushnyak, May 05 2013

Keywords

Comments

Intersection of A025475 and A000959.
Conjecture: the sequence is infinite.

Crossrefs

A289123 Numbers n such that (n-2,n) are twin primes, and (n,n+2) are twin lucky numbers.

Original entry on oeis.org

7, 13, 31, 73, 193, 283, 619, 643, 883, 1021, 1093, 1231, 2083, 2113, 2971, 3121, 3259, 4129, 4483, 4519, 5233, 6271, 6661, 6763, 7549, 7591, 8221, 9421, 10069, 10459, 10531, 11833, 12163, 13009, 13693, 13723, 13831, 17209, 17389, 20149, 20509, 21013, 21613
Offset: 1

Views

Author

Amiram Eldar, Jun 25 2017

Keywords

Comments

Intersection of A006512 and A031158. Subsequence of A031157. The other case in which (n-2,n) are twin lucky numbers, and (n,n+2) are twin primes has only one solution, n = 3, since twin primes are of the form (6k-1, 6k+1) (except for 3 and 5) and 6k-1 is never lucky.

Examples

			7 is in the sequence since (5,7) are twin primes, and (7,9) are twin lucky numbers.
		

Crossrefs

Programs

  • Mathematica
    L = Table[2*i + 1, {i, 0, 10^5}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]]; L[[Select[Range[1, Length[L] - 1], PrimeQ[L[[#]] - 2] && PrimeQ [L[[#]]] && L[[# + 1]] == L[[#]] + 2 &]]] (* after Jean-François Alcover at A000959 *)

A309381 Lucky primes k such that k+6 is also a lucky prime.

Original entry on oeis.org

7, 31, 37, 67, 73, 613, 991, 1087, 1117, 2467, 3301, 3307, 3607, 4561, 4987, 4993, 6367, 6373, 8263, 8641, 9643, 10903, 11827, 11953, 12373, 12547, 15187, 15901, 17047, 18043, 19603, 20353, 21751, 23671, 25147, 28837, 31033, 31231, 37957, 38707, 38917, 43201, 44383, 46021, 49627
Offset: 1

Views

Author

Robert Israel, Jul 26 2019

Keywords

Comments

A031157(k) for k such that A309334(k)=6.
The minimum gap between lucky primes (after the first) is 6.

Examples

			37 and 37+6=43 are both lucky primes, so 37 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    L:= [seq(i,i=1..N+6,2)]:
    for n from 2 while n < nops(L) do
      r:= L[n];
      L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
    od:
    L:= convert(select(isprime,L),set):
    A:= L intersect map(`-`,L,6):
    sort(convert(A,list));

A140286 The n-th lucky number which is the product of exactly n primes (with multiplicity).

Original entry on oeis.org

3, 15, 99, 495, 2079, 4455, 36855, 70875, 280665, 1393119, 4179357, 12931731, 32417901, 161026623, 514966329, 1490692005
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2008

Keywords

Comments

This is the main diagonal of the infinite array A(k,n) = n-th n-th lucky number to be the product of exactly k primes, with multiplicity, which begins as below:
============================================================================
k | n=1 | n=2 | n=3 | n=4 | n=5 | n=6 | n=7 | n=8 | n=9 | n=10 |in OEIS
1 | 3 | 7 | 13 | 31 | 37 | 43 | 67 | 73 | 79 | 127 |A031157
2 | 9 | 15 | 21 | 25 | 33 | 49 | 51 | 69 | 87 | 93 |A139787
3 | 63 | 75 | 99 | 105 | 171 | 195 | 231 | 261 | 273 | 285 |
4 | 297 | 495 | 621 | 693 | 735 | 819 | 855 | 975 | 1029 | 1107 |
5 | 1053 | |
6 | 729 | |
============================================================================
a(16) > 10^9. - Donovan Johnson, Oct 24 2010

Examples

			a(4) = 693 because the 113th lucky number = 693 = 3^2 * 7 * 11 is the 4th lucky number with 4 prime factors.
		

Crossrefs

Extensions

a(4) corrected and 5 more terms via b000959.txt from R. J. Mathar, Oct 22 2010
a(10)-a(15) from Donovan Johnson, Oct 24 2010
a(16) from Giovanni Resta, May 10 2020

A318480 Least start of n consecutive lucky numbers that are also n consecutive prime numbers.

Original entry on oeis.org

3, 997, 3301, 9631, 62378131
Offset: 1

Views

Author

Amiram Eldar, Aug 27 2018

Keywords

Comments

No other terms below 10^9.
Calculated using Hugo van der Sanden's Lucky numbers up to 10^9.

Examples

			The corresponding consecutive primes/lucky numbers are:
3
997, 1009
3301, 3307, 3313
9631, 9643, 9649, 9661
62378131, 62378137, 62378143, 62378149, 62378161
		

Crossrefs

A336688 Primes p such that the Wendt determinant A048954(p) has prime factors less than p.

Original entry on oeis.org

3, 7, 13, 31, 73, 127, 307, 331, 757
Offset: 1

Views

Author

Frank M Jackson and Michael B Rees, Jul 31 2020

Keywords

Comments

Michael B Rees has conjectured that for all primes p, each fully exponentiated prime factor less than p that divides the Wendt determinant W(p), if it exists, is of the form k*p + 1.
This sequence identifies the prime index p of Wendt determinants W(p) that have prime factors less than p.
These prime indices appear to be a subset of the lucky primes A031157.

Examples

			a(3) = 13. The Wendt determinant with a prime index p = 13 has prime factors less than p. W(13) = 3^6*53^2*79^2*131^2*521^2*8191 and 3^6 = 729 is of the form k*13 + 1. It is the 3rd occurrence of such a determinant.
		

Crossrefs

Programs

  • Mathematica
    w[n_] := Resultant[x^n-1, (1+x)^n-1, x]; getp[n_] := Module[{W=w[n], lst=Table[Prime[m], {m, 1, PrimePi[n]}], lst1={}, j, k, l}, Do[j=1; While[W>0&&IntegerQ[W/lst[[l]]^j], j++]; If[j-1>0, AppendTo[lst1, {lst[[l]], j-1}]], {l, 1, Length@lst}]; Join[{n}, lst1]]; lst = {}; Do[lst1=getp[Prime[n]]; If[Length@lst1>1, AppendTo[lst, lst1[[1]]]], {n, 1, PrimePi[331]}]; lst

Extensions

a(9) from Jinyuan Wang, Sep 04 2020
Previous Showing 11-20 of 21 results. Next