A367473
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^3.
Original entry on oeis.org
1, 9, 117, 1953, 39645, 946089, 25926597, 801869553, 27618402285, 1048096422009, 43444114011477, 1952712851250753, 94592798546953725, 4912513525545837129, 272265236648295312357, 16039329591716508497553, 1000809252891040145821965
Offset: 0
-
a(n) = sum(k=0, n, 3^k*(k+2)!*stirling(n, k, 2))/2;
A375949
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(4/3).
Original entry on oeis.org
1, 4, 32, 368, 5520, 102064, 2242832, 57095728, 1652211600, 53559908784, 1922581295632, 75700072208688, 3243905700776080, 150289130386531504, 7485459789379535632, 398857142195958963248, 22639650637589839298960, 1363772478150606703714224
Offset: 0
-
nmax=17; CoefficientList[Series[1 / (4 - 3 * Exp[x])^(4/3),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
-
a007559(n) = prod(k=0, n-1, 3*k+1);
a(n) = sum(k=0, n, a007559(k+1)*stirling(n, k, 2));
A384325
Expansion of Product_{k>=1} 1/(1 - k*x)^((3/4)^k).
Original entry on oeis.org
1, 12, 114, 1084, 11319, 136920, 1981228, 34705656, 731268315, 18203860748, 524073230394, 17111173850652, 623571696107069, 25046605210733184, 1097919954149781264, 52109508350206511840, 2660615337817983390318, 145353541761618312219336
Offset: 0
-
terms = 20; A[] = 1; Do[A[x] = -3*A[x] + 4*A[x/(1-x)]^(3/4) / (1-x)^3 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(exp(4*sum(k=1, N, sum(j=0, k, 3^j*j!*stirling(k, j, 2))*x^k/k)))
A375952
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(5/3).
Original entry on oeis.org
1, 5, 45, 565, 9085, 177925, 4106445, 109105365, 3279219485, 109983317925, 4071784884845, 164919693538165, 7253726995805885, 344284133391481925, 17538600019076063245, 954467594134586386965, 55263075631036363208285, 3391909484128563111709925
Offset: 0
-
nmax=17; CoefficientList[Series[1 / (4 - 3 * Exp[x])^(5/3),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
-
a008544(n) = prod(k=0, n-1, 3*k+2);
a(n) = sum(k=0, n, a008544(k+1)*stirling(n, k, 2))/2;
A384364
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 3^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 21, 9, 1, 1, 219, 657, 27, 1, 1, 3045, 119241, 22869, 81, 1, 1, 52923, 40365873, 80850987, 836001, 243, 1, 1, 1103781, 21955523049, 747786838869, 60579666801, 31436181, 729, 1, 1, 26857659, 17512689629457, 14298291269335467, 16117269494868801, 48066954848379, 1204022961, 2187, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 3, 21, 219, 3045, ...
1, 9, 657, 119241, 40365873, ...
1, 27, 22869, 80850987, 747786838869, ...
1, 81, 836001, 60579666801, 16117269494868801, ...
-
a(n, k) = sum(i=0, k*n, 3^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
A238466
Generalized ordered Bell numbers Bo(9,n).
Original entry on oeis.org
1, 9, 171, 4869, 184851, 8772309, 499559571, 33190014069, 2520110222451, 215270320769109, 20431783142389971, 2133148392099721269, 242954208655633344051, 29977118969127060357909, 3983272698956314883956371, 567091857051921058649396469
Offset: 0
-
m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(10 - 9*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
-
t=30; Range[0, t]! CoefficientList[Series[1/(10 - 9 Exp[x]), {x, 0, t}], x]
A238467
Generalized ordered Bell numbers Bo(10,n).
Original entry on oeis.org
1, 10, 210, 6610, 277410, 14553010, 916146210, 67285818610, 5647734061410, 533307215001010, 55954905981282210, 6457903731351210610, 813080459351919805410, 110901542660769629769010, 16290196917457939734258210
Offset: 0
-
m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(11 - 10*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
-
t=30; Range[0, t]! CoefficientList[Series[1/(11 - 10 Exp[x]), {x, 0, t}], x]
A368322
Expansion of e.g.f. exp(2*x) / (4 - 3*exp(x)).
Original entry on oeis.org
1, 5, 37, 389, 5413, 94085, 1962277, 47746949, 1327769893, 41538664325, 1443908686117, 55210237509509, 2302968844974373, 104068337416767365, 5064468256286449957, 264065894676248072069, 14686540175450593986853, 867871886679723760867205
Offset: 0
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=2, t=3) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
A368323
Expansion of e.g.f. exp(3*x) / (4 - 3*exp(x)).
Original entry on oeis.org
1, 6, 48, 516, 7212, 125436, 2616348, 63662556, 1770359772, 55384885596, 1925211581148, 73613650011996, 3070625126631132, 138757783222353756, 6752624341715261148, 352087859568330751836, 19582053567267458627292, 1157162515572965014445916
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[3x]/(4-3Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 18 2025 *)
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=3, t=3) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
A368324
Expansion of e.g.f. exp(4*x) / (4 - 3*exp(x)).
Original entry on oeis.org
1, 7, 61, 679, 9589, 167167, 3488221, 84882679, 2360477509, 73846507567, 2566948755181, 98151533290279, 4094166835331029, 185010377629273567, 9003499122285420541, 469450479424436219479, 26109404756356597154149, 1542883354097286642881167
Offset: 0
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=4, t=3) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
Comments