cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A343465 a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-3)^d.

Original entry on oeis.org

3, -3, 11, -21, 51, -119, 315, -831, 2195, -5883, 16107, -44357, 122643, -341487, 956635, -2690841, 7596483, -21522347, 61171659, -174342165, 498112275, -1426403751, 4093181691, -11767920107, 33891544419, -97764009003, 282429537947, -817028472645, 2366564736723, -6863037262207
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-(1/n) Sum[EulerPhi[n/d] (-3)^d, {d, Divisors[n]}], {n, 1, 30}]
    nmax = 30; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 3 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} phi(k) * log(1 + 3*x^k) / k.
a(n) = -(1/n) * Sum_{k=1..n} (-3)^gcd(n,k).
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A032308.
Product_{n>=1} (1 - x^n)^a(n) = g.f. for A261582.

A352762 Expansion of Product_{k>=1} 1 / (1 + 3^(k-1)*x^k).

Original entry on oeis.org

1, -1, -2, -7, -11, -43, -65, -259, -146, -1798, 826, -8116, 17593, -35089, 301903, -308464, 3582403, 157367, 28816009, 9388694, 329375419, -61352008, 2991009094, 509592773, 23675224255, 1207374806, 229200996508, -129896994130, 2090952547882, -816324790165, 14079091274800
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 + 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 3^(n - k), {k, 0, n}], {n, 0, 30}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 3^(n-k), where p(n,k) is the number of partitions of n into k parts.

A370711 a(n) = 4^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/2).

Original entry on oeis.org

1, 6, 6, 348, -570, 12084, -31332, 780792, -6111930, 65506884, -599418444, 6707736456, -69508986852, 738378468744, -7878832564872, 85524000547056, -929068361832378, 10158667075255524, -111690827626777788, 1234592278534799592, -13700571880245603276, 152613494540593338264
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 4^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(4*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Sqrt[QPochhammer[-3, x]/4], {x, 0, nmax}], x] * 4^Range[0, nmax]

Formula

G.f.: Product_{k>=1} (1 + 3*(4*x)^k)^(1/2).
a(n) ~ (-1)^(n+1) * c * 12^n / n^(3/2), where c = QPochhammer(-1/3)^(1/2) / (2*sqrt(Pi)) = 0.311283382185276347775502154581850436407169685238...

A370712 a(n) = 3^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/3).

Original entry on oeis.org

1, 3, 0, 99, -270, 2430, -10287, 105462, -750141, 5702481, -42623901, 347424633, -2779077762, 22353287634, -181730796723, 1493711042589, -12321529794261, 102125312638713, -850797139405887, 7120067746384863, -59800770201017934, 503922807927384129, -4259721779079782751
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[(QPochhammer[-3, x]/4)^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]

Formula

G.f.: Product_{k>=1} (1 + 3*(3*x)^k)^(1/3).
a(n) ~ (-1)^(n+1) * c * 9^n / n^(4/3), where c = QPochhammer(-1/3)^(1/3) / (3*Gamma(2/3)) = 0.26286302373105271371291957730496322329245126572...

A266820 Expansion of Product_{k>=1} ((1 + 2*x^k) * (1 + 3*x^k)).

Original entry on oeis.org

1, 5, 11, 30, 66, 115, 252, 445, 762, 1350, 2238, 3690, 5909, 9480, 14460, 22475, 34326, 51150, 76398, 111810, 163350, 236610, 339667, 482040, 684060, 960780, 1340953, 1863570, 2573022, 3533310, 4830822, 6580170, 8900382, 12011430, 16125198, 21567965
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

Convolution of A032302 and A032308.
In general, for m1 > 0 and m2 > 0, if g.f. = Product_{k>=1} ((1 + m1*x^k) * (1 + m2*x^k)) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m1+1)*(m2+1)*Pi) * n^(3/4)), where c = Pi^2/3 + log(m1)^2/2 + log(m2)^2/2 + polylog(2, -1/m1) + polylog(2, -1/m2).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+2*x^k) * (1+3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(3*Pi) * n^(3/4)), where c = Pi^2/3 + log(2)^2/2 + log(3)^2/2 + polylog(2, -1/2) + polylog(2, -1/3) = 6.665989921346842772385004076363525173910446415877... .

A266822 Expansion of Product_{k>=1} ((1 + x^k) * (1 + 3*x^k)).

Original entry on oeis.org

1, 4, 7, 20, 35, 60, 124, 200, 324, 524, 865, 1320, 2016, 3036, 4453, 6684, 9668, 13856, 19792, 27876, 38956, 54640, 75320, 103268, 141191, 191320, 257892, 346164, 463284, 615292, 814883, 1074556, 1409904, 1844284, 2402756, 3118020, 4038164, 5207344, 6694116
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

Convolution of A000009 and A032308.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k) * (1+3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(2*Pi) * n^(3/4)), where c = Pi^2/4 + log(3)^2/2 + polylog(2, -1/3) = 2.761842454190822171313479302500904035832... .

A268499 Expansion of Product_{k>=1} ((1 + 3*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 2, 0, 8, -2, 8, 16, 8, 8, 10, 80, -8, 72, -24, 144, 128, 134, 40, 224, 120, 232, 688, 176, 696, 32, 1194, -96, 1840, 1144, 2248, 288, 2968, 800, 4160, 752, 5104, 6438, 4984, 5104, 5488, 10960, 4856, 14080, 3480, 24408, 15448, 26832, 7080, 42120, 11178
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Comments

In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 + x^k)) then a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (2*sqrt((m+1)*Pi) * n^(3/4)), where c = Pi^2/3 + 2*log(m)^2 + 4*polylog(2, -1/m).

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+3*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (4*sqrt(Pi)*n^(3/4)), where c = Pi^2/3 + 2*log(3)^2 + 4*polylog(2, -1/3) = 4.467633549370382939364... .

A291971 Triangle read by rows: T(n,k) = 3 * T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 3, 0, 3, 0, 3, 9, 0, 3, 9, 0, 3, 18, 0, 3, 18, 27, 0, 3, 27, 27, 0, 3, 27, 54, 0, 3, 36, 81, 0, 3, 36, 108, 81, 0, 3, 45, 135, 81, 0, 3, 45, 189, 162, 0, 3, 54, 216, 243, 0, 3, 54, 270, 405, 0, 3, 63, 324, 486, 243, 0, 3, 63, 378, 729, 243, 0, 3, 72, 432, 891
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2017

Keywords

Examples

			First few rows are:
  1;
  0, 3;
  0, 3;
  0, 3,  9;
  0, 3,  9;
  0, 3, 18;
  0, 3, 18,  27;
  0, 3, 27,  27;
  0, 3, 27,  54;
  0, 3, 36,  81;
  0, 3, 36, 108, 81.
		

Crossrefs

Row sums give A032308.
Columns 0-1 give A000007, A010701.
Cf. A008289 (m=1), A291970 (m=2), this sequence (m=3).

A370739 a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/5).

Original entry on oeis.org

1, 15, -75, 35250, -1138125, 72645000, -3307996875, 244578890625, -15502648125000, 985908809765625, -63515254624218750, 4314500023927734375, -291905297026816406250, 19789483493484814453125, -1355414138248614990234375, 93666904586649390380859375, -6498800175020013123779296875
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Comments

In general, if d > 1, m > 1 and g.f. = Product_{k>=1} (1 + d*x^k)^(1/m), then a(n) ~ (-1)^(n+1) * QPochhammer(-1/d)^(1/m) * d^n / (m*Gamma(1 - 1/m) * n^(1 + 1/m)).

Crossrefs

Cf. A032308 (d=3,m=1), A370711 (d=3,m=2), A370712 (d=3,m=3), A370738 (d=3,m=4).
Cf. A032302 (d=2,m=1), A370709 (d=2,m=2), A370716 (d=2,m=3), A370736 (d=2,m=4), A370737 (d=2,m=5).
Cf. A000009 (d=1,m=1), A298994 (d=1,m=2), A303074 (d=1,m=3)

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+3*x^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1+3*(25*x)^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + 3*(25*x)^k)^(1/5).
a(n) ~ (-1)^(n+1) * QPochhammer(-1/3)^(1/5) * 75^n / (5 * Gamma(4/5) * n^(6/5)).

A370752 a(n) = 3^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/3).

Original entry on oeis.org

1, 6, 36, 360, 1998, 18792, 121176, 1123632, 7537860, 72078174, 510702408, 4896308088, 35923749480, 345406994280, 2600934294816, 24985346997888, 191735328374478, 1838307293836560, 14317601666954364, 136953233511162840, 1079293961918593800, 10299943344889922832
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Comments

In general, if d > 1, m >= 1 and g.f. = Product_{k>=1} ((1 + d*x^k)/(1 - d*x^k))^(1/m), then a(n) ~ QPochhammer(-1, 1/d)^(1/m) * d^n / (Gamma(1/m) * QPochhammer(1/d)^(1/m) * n^(1 - 1/m)).

Crossrefs

Cf. A303390 (d=3,m=1), A370751 (d=3,m=2), A370752 (d=3,m=3).
Cf. A261584 (d=2,m=1), A303346 (d=2,m=2), A370750 (d=2,m=3), A370749 (d=2,m=4).
Cf. A015128 (d=1,m=1), A303307 (d=1,m=2), A303342 (d=1,m=3).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k)/(1 - 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 3*(3*x)^k)/(1 - 3*(3*x)^k))^(1/3).
a(n) ~ QPochhammer(-1, 1/3)^(1/3) * 9^n / (Gamma(1/3) * QPochhammer(1/3)^(1/3) * n^(2/3)).
Previous Showing 11-20 of 25 results. Next