cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A260955 Differences of the increasing arithmetic progression a^2+a, b^2+b, c^2+c, where b = 5*a+2, c = 7*a+3 and a >= 0.

Original entry on oeis.org

6, 54, 150, 294, 486, 726, 1014, 1350, 1734, 2166, 2646, 3174, 3750, 4374, 5046, 5766, 6534, 7350, 8214, 9126, 10086, 11094, 12150, 13254, 14406, 15606, 16854, 18150, 19494, 20886, 22326, 23814, 25350, 26934, 28566, 30246, 31974, 33750, 35574, 37446, 39366, 41334
Offset: 0

Views

Author

Marco RipĂ , Aug 05 2015

Keywords

Examples

			By the definition, given a = 7 and b = 5*7+2 = 37, c = 7*7+3 = 52, it follows that a^2+a = 56, b^2+b = 1406, c^2+c = 2756, where 56, 1406, 2756 are in arithmetic progression. Therefore, 2756-1406 = 1406-56 = 1350 and 1350 is in the sequence (8th term).
		

Crossrefs

Second bisection of A033581 (the first bisection is A195824).

Programs

  • Magma
    [24*n^2+24*n+6: n in [0..40]]; // Vincenzo Librandi, Aug 05 2015
  • Mathematica
    Table[24 n^2 + 24 n + 6, {n, 0, 40}] (* Bruno Berselli, Aug 05 2015 *)
    LinearRecurrence[{3, -3, 1}, {6, 54, 150}, 50] (* Vincenzo Librandi, Aug 05 2015 *)
  • PARI
    Vec(6*(1+6*x+x^2)/(1-x)^3 + O(x^100)) \\ Colin Barker, Aug 05 2015
    

Formula

a(n) = 24*n^2 + 24*n + 6.
From Colin Barker, Aug 05 2015: (Start)
G.f.: 6*(1 + 6*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Bruno Berselli, Aug 05 2015: (Start)
a(n) = A032528(4*n+2).
a(n)*(2*h-1)^2 = a((2*h-1)*n+h-1). For h=0, a(n) = a(-n-1); for h=7, 169*a(n) = a(13*n+6). (End)
From Elmo R. Oliveira, Dec 28 2024: (Start)
E.g.f.: 6*exp(x)*(1 + 8*x + 4*x^2).
a(n) = 6*A016754(n). (End)

A270693 Alternating sum of centered 25-gonal numbers.

Original entry on oeis.org

1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2016

Keywords

Comments

The absolute value alternating sum of centered k-gonal numbers gives concentric k-gonal numbers.
More generally, the ordinary generating function for the alternating sum of centered k-gonal numbers is (1 - (k - 2)*x + x^2)/((1 - x)*(1 + x)^3).

Crossrefs

Programs

  • Magma
    [((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
  • Maple
    A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
  • Mathematica
    LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41]
    Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
  • PARI
    x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
    

Formula

G.f.: (1 - 23*x + x^2)/((1 - x)*(1 + x)^3).
E.g.f.: (1/8)*(-21*exp(x) + (29 - 150*x + 50*x^2)*exp(-x)).
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = ((-1)^n*(50*n^2 + 100*n + 29) - 21)/8.

A281999 Half of the height of the right trapezoidal gnomon (of the derivative of Y=X^5).

Original entry on oeis.org

1, 30, 181, 600, 1501, 3150, 5881, 10080, 16201, 24750, 36301, 51480, 70981, 95550, 126001, 163200, 208081, 261630, 324901, 399000, 485101, 584430, 698281, 828000, 975001, 1140750, 1326781, 1534680, 1766101, 2022750, 2306401, 2618880, 2962081, 3337950, 3748501, 4195800
Offset: 1

Views

Author

Stefano Maruelli, Feb 05 2017

Keywords

Comments

The curves Y = X^m are characterized by the fact that the first derivative Y'= m*X^(m-1) (and all the following derivatives) are squarable in the integers by rectangular columns called gnomons with base=1 and height M_m = X^m - (X-1)^m. Calling Y' = X^m - (X-1)^m the first "integer" derivative, considering the case m=5, {a(n)} represents the values of half of the maximum (right) height of the trapezoidal gnomons. The formula is: a(n) = (n^5 - (n-1)^5) - a(n-1). The broken line given by joining the points (n; 2*a(n)); define a series of trapezoidal areas (gnomons) that have the same area below the curve Y'=5*X^4. It means that the recursive sum of the trapezoidal gnomon's area, (a(n) + a(n-1))*1, from 1 to n, gives n^5.
The general formula, changing the exponent for all the Y = X^m curves, gives infinitely many new sequences: b(m,k) = m^k - (m-1)^k - b(m-1,k). The same can be done for all the following derivatives. For the smallest exponents k of Y = X^k the sequences are known: for k=3 the sequence is A032528, for k=4 the sequence is A007588, and k=5 corresponds to this sequence.

Examples

			For n=2, a(2) = (2^5 - 1^5) - (1) = 30.
		

Programs

  • Mathematica
    LinearRecurrence[{4,-5,0,5,-4,1},{1,30,181,600,1501,3150},40] (* Harvey P. Dale, May 03 2024 *)
  • PARI
    Vec(x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/((1 + x)*(1 - x)^5) + O(x^30)) \\ Colin Barker, Feb 27 2017

Formula

G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/((1 + x)*(1 - x)^5).
a(n) = (5*(n^2 - 1)*n^2 - (-1)^n + 1)/2.
a(n) = (n^5-(n-1)^5) - a(n-1).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>6. - Colin Barker, Feb 27 2017

A195060 Numbers on the main diagonals and on the axes (x,y) in the square spiral whose vertices are the generalized pentagonal numbers A001318.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 9, 12, 13, 15, 18, 22, 24, 26, 30, 35, 37, 40, 45, 51, 54, 57, 63, 70, 73, 77, 84, 92, 96, 100, 108, 117, 121, 126, 135, 145, 150, 155, 165, 176, 181, 187, 198, 210, 216, 222, 234, 247, 253, 260, 273, 287, 294, 301, 315, 330
Offset: 0

Views

Author

Omar E. Pol, Sep 08 2011

Keywords

Comments

Union of A001318, A032528 and A045943, without repetitions.

Crossrefs

Formula

a(2*n) = A001318(n). a(4*n+1) = A032528(n+1). a(4*n+3) = A045943(n+1).
Conjectures: a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-8) - 2*a(n-9) + 2*a(n-10) - 2*a(n-11) + a(n-12); g.f.: -x*(1+x^2+x^3-x^4+x^5+x^7-2*x^8+x^11+2*x^9-2*x^10) / ( (1+x)*(x^4+1)*(x^2+1)^2*(x-1)^3 ). - R. J. Mathar, Oct 11 2011
Previous Showing 41-44 of 44 results.