cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A215088 a(n)=Sum{d(i)*2^i: i=0,1,...,m}, where Sum{d(i)*5^i: i=0,1,...,m} is the base 5 representation of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 8, 9, 10, 11, 12, 10, 11, 12, 13, 14, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 10, 11, 12, 13, 14, 12, 13, 14, 15, 16, 14, 15, 16, 17, 18, 16, 17, 18, 19, 20, 12, 13, 14, 15, 16, 14, 15, 16, 17, 18, 16, 17, 18, 19, 20, 18, 19, 20, 21, 22, 20, 21, 22, 23
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2012

Keywords

Crossrefs

Cf. A033042.

Programs

  • Mathematica
    t = Table[FromDigits[RealDigits[n, 5], 2], {n, 0, 100}]

Formula

a(n) = 2*a(n/5) if n = 0 mod 5; otherwise, a(n) = a(n-1) + 1. - Clark Kimberling, Aug 03 2012

A341907 T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Comments

For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3   4    5    6    7    8    9    10    11    12
  ---+-------------------------------------------------------------
    0|  0  0   0   0   0    0    0    0    0    0     0     0     0
    1|  1  1   1   1   1    1    1    1    1    1     1     1     1
    2|  0  1   2   3   4    5    6    7    8    9    10    11    12
    3|  1  2   3   4   5    6    7    8    9   10    11    12    13
    4|  0  1   4   9  16   25   36   49   64   81   100   121   144
    5|  1  2   5  10  17   26   37   50   65   82   101   122   145
    6|  0  2   6  12  20   30   42   56   72   90   110   132   156
    7|  1  3   7  13  21   31   43   57   73   91   111   133   157
    8|  0  1   8  27  64  125  216  343  512  729  1000  1331  1728
    9|  1  2   9  28  65  126  217  344  513  730  1001  1332  1729
   10|  0  2  10  30  68  130  222  350  520  738  1010  1342  1740
   11|  1  3  11  31  69  131  223  351  521  739  1011  1343  1741
   12|  0  2  12  36  80  150  252  392  576  810  1100  1452  1872
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }

Formula

T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A365771 a(n) = binomial(2*n+1, n)/(2*n+1) * binomial(3*n-1, n) for n >= 0.

Original entry on oeis.org

1, 2, 20, 280, 4620, 84084, 1633632, 33256080, 701149020, 15191562100, 336424047960, 7584833081280, 173575987821600, 4022766574898400, 94247674040476800, 2228957491057276320, 53150802525726081660, 1276661433215969608500, 30863850087221160009000
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2023

Keywords

Comments

Equals the central terms of triangle A365770.
Conjectures: given A033042 is the sums of distinct powers of 5, then
(1) a(5*A033042(n)) == 4 (mod 5) for n > 0,
(2) a(5*A033042(n) + 1) == 2 (mod 5) for n > 0,
(3) a(n) == 0 (mod 5) for n > 0 except when n or n-1 equals 5*A033042(k) for some k >= 0.

Crossrefs

Programs

  • Mathematica
    A365771[n_] := Binomial[2*n + 1, n]/(2*n + 1)*Binomial[3*n - 1, n];
    Array[A365771, 20, 0] (* Paolo Xausa, Oct 12 2024 *)
  • PARI
    {a(n) = binomial(2*n+1, n)/(2*n+1) * binomial(3*n-1, n)}
    for(n=0,30,print1(a(n),", "))
    
  • Python
    from math import comb
    def A365771(n): return comb(m:=(n<<1)+1,n)*comb(m+n-2,n)//m if n else 1 # Chai Wah Wu, Oct 11 2023

Formula

a(n) = A365770(2*n,n) for n >= 0.
a(n) = A000108(n) * A165817(n) for n >= 0.
a(n) = 2*A319578(n) = (2/3) * A007004(n) for n >= 1. - Peter Bala, Aug 25 2025

A037410 Positive numbers having the same set of digits in base 2 and base 5.

Original entry on oeis.org

1, 5, 25, 26, 30, 31, 125, 126, 130, 131, 150, 151, 155, 625, 626, 630, 631, 650, 651, 655, 656, 750, 751, 755, 756, 775, 776, 780, 3125, 3126, 3130, 3131, 3150, 3151, 3155, 3156, 3250, 3251, 3255, 3256, 3275, 3276, 3280, 3281
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A033042.

Programs

  • Mathematica
    Select[Range[3500],Union[IntegerDigits[#,2]]==Union[IntegerDigits[#,5]]&] (* Harvey P. Dale, May 08 2025 *)
  • PARI
    isok(n) = Set(digits(n, 2)) == Set(digits(n, 5)); \\ Michel Marcus, Jan 11 2017

A258946 Numbers that can be expressed using only the digits 0 and 1 in no more than three different bases.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 11, 14, 15, 18, 19, 22, 23, 24, 29, 32, 33, 34, 35, 38, 41, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 66, 67, 70, 71, 74, 75, 76, 77, 78, 79, 83, 86, 87, 88, 89, 92, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107
Offset: 1

Views

Author

Thomas Oléron Evans, Jun 15 2015

Keywords

Comments

All integers n >= 4 may trivially be expressed using only the digits 0 and 1 in three different bases: 2, n-1 (as '11') and n (as '10'). The numbers in this sequence cannot be expressed using only 0 and 1 in any other base.
The only positive integers that may be expressed using only the digits 0 and 1 in fewer than three different bases are 2 and 3, for which the values {2, n-1, n} are not all distinct or are not all valid bases.
An equivalent definition: For each term a(n) of this sequence, there are at most three integers k >= 2 for which a(n) is a sum of distinct nonnegative integer powers of k.

Examples

			5 is a term of the sequence, because 5 may be expressed using only the digits 0 and 1 in precisely three different bases: 2, 4 and 5 (5 is '12' in base 3).
9 is not a term of the sequence, because 9 can be expressed using only the digits 0 and 1 in four different bases: 2, 3, 8, 9 (9 is '100' in base 3).
		

Crossrefs

Subsequence of A074940.

Programs

  • Maple
    filter:= proc(n)
      local b;
      for b from 3 to n-2 do
        if max(convert(n,base,b)) <= 1 then return false
        fi
      od:
    true
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Jun 19 2015
  • PARI
    is(n)=if(n<2, return(0)); for(b=3,sqrtint(n),if(vecmax(digits(n,b))<2, return(0))); 1 \\ Charles R Greathouse IV, Jun 15 2015

A268337 Numbers which have only digits 0 and 1 in bases 3 and 5.

Original entry on oeis.org

0, 1, 30, 31, 756, 3250, 3276, 3280, 81255, 81256, 81280, 81900, 81901, 82000, 59078250, 59078251, 59078280, 59078281, 31789468750, 31789468776, 31789469505, 31789469506, 31789471900, 31789471905, 31789471906, 31789472005, 946095722031, 946095800025, 946095800026, 946095800031, 946095800130
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2016

Keywords

Comments

The number 82000 is famous for having only digits 0 and 1 in all bases <= 5, no other such number > 1 is known. See also A146025 and A258981.
If explicit formulas for (convenient) infinite subsequences of this one can be found, this could open new ways to progress on this problem.
The terms come in groups having roughly the first half (or at least third) of digits in common, see the link "Terms in base 10, 5 and 3".

Crossrefs

Programs

  • Maple
    d:= 20: # to get all terms < 5^d
    res:= NULL:
    T:= combinat:-cartprod([[$0..1]$d]):
    while not T[finished] do
      r:= T[nextvalue]();
      v:= add(r[i]*5^(d-i),i=1..d);
      if max(convert(v,base,3)) <= 1 then
        res:= res,v
      fi
    od:
    res; # Robert Israel, Feb 01 2016
  • Mathematica
    Module[{t=Tuples[{0,1},25],b3,b5},b3=FromDigits[#,3]&/@t;b5=FromDigits[ #,5]&/@t;Intersection[b3,b5]] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Dec 13 2021 *)
  • PARI
    print1(0);for(n=1,1e10,vecmax(digits(t=subst(Pol(binary(n)),'x,5),3))<2&&print1(","t))
    
  • PARI
    list(lim)=my(v=List([0]),d=digits(lim\1,5),t); for(i=1,#d, if(d[i]>1, for(j=i,#d, d[j]=1); break)); for(n=1,fromdigits(d,5), t=fromdigits(binary(n),5); if(vecmax(digits(t,3))<2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 02 2016

Formula

a(n) >> n^k with k = log 5/log 2 = 2.321928.... - Charles R Greathouse IV, Feb 02 2016

A263684 Numbers whose base-4 and base-5 representations have only 0's and 1's.

Original entry on oeis.org

0, 1, 5, 16400, 16401, 16405, 82000, 82001, 82005
Offset: 1

Views

Author

Robert Israel, Oct 23 2015

Keywords

Comments

Intersection of A000695 and A033042.
These appear to be all the terms. There are no more below 10^500.

Examples

			16400 is 10000100 in base 4 and 1011100 in base 5.
		

Crossrefs

Programs

  • Maple
    split:= proc(ab, B)
       local a,b,La, Lb, k, j, a1,  a2, b1, b2, x;
       global Res, count;
       a:= ab[1]; b:= ab[2];
       if b-a <= 1000 then
          for x from a to b-1 do
            if max(convert(x,base,4)) <= 1 and max(convert(x,base,5)) <= 1 then
               count:= count+1; Res[count]:= x
            fi
          od;
          return ({});
       fi;
       La:= convert(a,base,B);
       Lb:= convert(b,base,B);
       if nops(Lb) > nops(La) then La:= [op(La),0$(nops(Lb)-nops(La))] fi;
       k:= ListTools:-SelectLast(`>`,Lb-La,0,output=indices);
       if La[k] = 0 then
         a1:= a;
         b1:= 2 + add(B^i,i=1..k-2) + add(La[i]*B^(i-1),i=k+1..nops(La));
         a2:= B^(k-1) + add(La[i]*B^(i-1),i=k+1..nops(La));
         b2:= min(b, b1 + B^(k-1));
         return(select(t -> (t[1] t[1] 0 do
       Cands:= map(op@split, Cands, 5);
       Cands:= map(op@split, Cands, 4);
    od:
    sort(convert(Res,list));
  • Mathematica
    Select[Range[0,83000],Max[Join[IntegerDigits[#,4],IntegerDigits[#,5]]]<2&] (* Harvey P. Dale, Sep 04 2018 *)
  • PARI
    isok(n) = (n==0) || ((vecmax(digits(n,4))<=1) && (vecmax(digits(n,5))<=1)); \\ Michel Marcus, Oct 24 2015
Previous Showing 31-37 of 37 results.