cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A126720 Primes p such that p - q = 24, where q is the previous prime before p; or prime numbers preceded by precisely 23 composite numbers.

Original entry on oeis.org

1693, 2203, 4201, 4547, 4783, 5261, 6197, 6421, 6761, 7103, 7393, 7817, 8147, 8353, 9091, 11027, 11657, 11863, 12097, 12143, 13033, 13291, 16057, 16217, 16477, 16787, 16811, 17077, 17707, 18013, 18617, 18661, 19207, 19531, 20507, 22433, 22901
Offset: 1

Views

Author

Artur Jasinski, Feb 13 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 1] - Prime[x] == 24, AppendTo[a, Prime[x + 1]]], {x, 1, 10000}]; a
  • PARI
    q=2; forprime(p=3,1e5, if(p-q==24, print1(p", ")); q=p) \\ Charles R Greathouse IV, Mar 13 2020

Formula

a(n) = A098974(n) + 24. - Amiram Eldar, Mar 13 2020
a(n) >> n log^2 n. - Charles R Greathouse IV, Mar 13 2020

A257638 Numbers n such that n-25, n-1, n+1 and n+25 are consecutive primes.

Original entry on oeis.org

232962, 311712, 431832, 435948, 473352, 501342, 525492, 596118, 635388, 665922, 699792, 754182, 842448, 1013502, 1017648, 1036002, 1156848, 1255452, 1284738, 1306692, 1479912, 1516128, 1551732, 1560708, 1595928, 1659348, 1690572, 1745112
Offset: 1

Views

Author

Karl V. Keller, Jr., Nov 04 2015

Keywords

Comments

This is a subsequence of A014574 (average of twin prime pairs) and A256753.
The terms ending in 2 and 8 are congruent to 12 mod 30 and 18 mod 30 respectively.
The numbers n-25 and n+1 belong to A033560 (p and p+24 are primes) and A098974 (p where p+24 is the next prime).
The numbers n-25 and n-1 belong to A252089 (p and p+26 are primes).

Examples

			232962 is the average of the four consecutive primes 232937, 232961, 232963, 232987.
311712 is the average of the four consecutive primes 311687, 311711, 311713, 311737.
		

Crossrefs

Cf. A014574, A077800 (twin primes), A249674, A256753.

Programs

  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,1000001,6):
      if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-25 and nextprime(i+1) == i+25: print (i,end=', ')

A263298 Numbers n such that n-23, n-1, n+1 and n+23 are consecutive primes.

Original entry on oeis.org

19890, 43890, 157770, 400680, 436650, 609780, 681090, 797310, 924360, 978180, 1093200, 1116570, 1179150, 1185930, 1313700, 1573110, 1663350, 2001510, 2110290, 2163570, 2336310, 2372370, 2408280, 2415630, 2562690, 2877840, 2896740, 2961900
Offset: 1

Views

Author

Karl V. Keller, Jr., Oct 13 2015

Keywords

Comments

This is a subsequence of A014574 (average of twin prime pairs), A256753 and A249674 (30n).
From Michel Marcus, Oct 15 2015: (Start)
n-23 and n+1 belong to A242476 (p and p+22 are primes).
n-23 and n-1 belong to A033560 (p and p+24 are primes).
(End)

Examples

			19890 is the average of the four consecutive primes 19867, 19889, 19891, 19913.
43890 is the average of the four consecutive primes 43867, 43889, 43891, 43913.
		

Crossrefs

Cf. A014574, A077800 (twin primes), A249674, A256753.

Programs

  • Mathematica
    {p, q, r, s} = {2, 3, 5, 7};lst={}; While[p<5000000, If[Differences[{p, q, r, s}]=={22, 2, 22}, AppendTo[lst, q + 1]]; {p, q, r, s}={q, r, s,NextPrime@s}]; lst (* Vincenzo Librandi, Oct 14 2015 *)
  • PARI
    isok(n) = isprime(n-1) && isprime(n+1) && (precprime(n-2) == n-23) && (nextprime(n+2) == n+23); \\ Michel Marcus, Oct 14 2015
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,5000001,6):
      if  isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-23 and nextprime(i+1) == i+23: print (i,end=', ')
    

A274381 Safe primes p such that p + 24 is also a safe prime.

Original entry on oeis.org

23, 59, 83, 359, 479, 563, 839, 863, 1283, 2039, 2879, 2999, 3779, 4259, 4679, 5483, 7703, 10079, 12203, 13103, 23603, 26903, 27803, 30323, 31583, 33623, 35339, 41519, 43403, 44519, 44939, 53759, 55079, 57119, 57899, 58043, 65123, 66359, 70139, 70199, 76379, 77723, 79943
Offset: 1

Views

Author

Keywords

Examples

			83 is a safe prime and so is 83 + 24 = 107.
4679 is a safe prime and so is 4679 + 24 = 4703.
		

Crossrefs

Programs

  • Maple
    A274381:=n->`if`(type((n-1)/2, prime) and isprime(n+24) and isprime(n) and type((n+23)/2, prime), n, NULL): seq(A274381(n), n=1..10^5); # Wesley Ivan Hurt, Jun 25 2016
  • Mathematica
    Select[Prime@ Range[10^4], PrimeQ[(# - 1)/2] && PrimeQ[# + 24] && PrimeQ[(23 + #)/2] &] (* Giovanni Resta, Jun 23 2016 *)
    Select[Prime[Range[8000]],AllTrue[{(#-1)/2,(#+23)/2,#+24},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 31 2019 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if (isprime((p-1)/2) && isprime(q=p+24) && isprime((q-1)/2), print1(p, ", "))); \\ Michel Marcus, Jun 23 2016

Formula

{ x | both x and x + 24 are safe primes }.

A207973 Primes p such that the equation prime(p-k)+k! = prime(p) has at least one solution k>0.

Original entry on oeis.org

2, 31, 43, 67, 107, 151, 167, 179, 227, 233, 389, 509, 547, 661, 719, 769, 823, 829, 967, 1033, 1093, 1259, 1321, 1493, 1567, 1733, 1873, 2099, 2341, 2539, 2621, 2683, 2819, 2927, 3119, 3169, 3373
Offset: 1

Views

Author

Gerasimov Sergey, Mar 02 2012

Keywords

Comments

Apart from the first entry, the majority of the entries stem from k=4, i.e., this is essentially a reverse lookup within A033560. - R. J. Mathar, Mar 15 2012

Examples

			2 is in the sequence because prime(2) = prime(2-1)+1 = 3,
31 is in the sequence because prime(31) = prime(31-4)+1*2*3*4 = 103+24 = 127,
43 is in the sequence because prime(43) = prime(43-4)+1*2*3*4 = 167+24 = 191.
		

Crossrefs

Programs

  • PARI
    is_A207973(n)={local(k);k=1;while((kMichael B. Porter, Mar 22 2012

A309392 Square array read by downward antidiagonals: A(n, k) is the k-th prime p such that p + 2*n is also prime, or 0 if that prime does not exist.

Original entry on oeis.org

3, 5, 3, 11, 7, 5, 17, 13, 7, 3, 29, 19, 11, 5, 3, 41, 37, 13, 11, 7, 5, 59, 43, 17, 23, 13, 7, 3, 71, 67, 23, 29, 19, 11, 5, 3, 101, 79, 31, 53, 31, 17, 17, 7, 5, 107, 97, 37, 59, 37, 19, 23, 13, 11, 3, 137, 103, 41, 71, 43, 29, 29, 31, 13, 11, 7, 149, 109
Offset: 1

Views

Author

Felix Fröhlich, Jul 28 2019

Keywords

Comments

The same as A231608 except that A231608 gives the upward antidiagonals of the array, while this sequence gives the downward antidiagonals.
Conjecture: All values are nonzero, i.e., for any even integer e there are infinitely many primes p such that p + e is also prime.
The conjecture is true if Polignac's conjecture is true.

Examples

			The array starts as follows:
3,  5, 11, 17, 29, 41, 59,  71, 101, 107, 137, 149, 179, 191
3,  7, 13, 19, 37, 43, 67,  79,  97, 103, 109, 127, 163, 193
5,  7, 11, 13, 17, 23, 31,  37,  41,  47,  53,  61,  67,  73
3,  5, 11, 23, 29, 53, 59,  71,  89, 101, 131, 149, 173, 191
3,  7, 13, 19, 31, 37, 43,  61,  73,  79,  97, 103, 127, 139
5,  7, 11, 17, 19, 29, 31,  41,  47,  59,  61,  67,  71,  89
3,  5, 17, 23, 29, 47, 53,  59,  83,  89, 113, 137, 149, 167
3,  7, 13, 31, 37, 43, 67,  73,  97, 151, 157, 163, 181, 211
5, 11, 13, 19, 23, 29, 41,  43,  53,  61,  71,  79,  83,  89
3, 11, 17, 23, 41, 47, 53,  59,  83,  89, 107, 131, 137, 173
7, 19, 31, 37, 61, 67, 79, 109, 127, 151, 157, 211, 229, 241
5,  7, 13, 17, 19, 23, 29,  37,  43,  47,  59,  73,  79,  83
		

Crossrefs

Cf. A231608.
Cf. A001359 (row 1), A023200 (row 2), A023201 (row 3), A023202 (row 4), A023203 (row 5), A046133 (row 6), A153417 (row 7), A049488 (row 8), A153418 (row 9), A153419 (row 10), A242476 (row 11), A033560 (row 12), A252089 (row 13), A252090 (row 14), A049481 (row 15), A049489 (row 16), A252091 (row 17), A156104 (row 18), A271347 (row 19), A271981 (row 20), A271982 (row 21), A272176 (row 22), A062284 (row 25), A049490 (row 32), A020483 (column 1).

Programs

  • PARI
    row(n, terms) = my(i=0); forprime(p=1, , if(i>=terms, break); if(ispseudoprime(p+2*n), print1(p, ", "); i++))
    array(rows, cols) = for(x=1, rows, row(x, cols); print(""))
    array(12, 14) \\ Print initial 12 rows and 14 columns of the array
Previous Showing 11-16 of 16 results.