cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A125200 a(n) = n*(4*n^2 + n - 1)/2.

Original entry on oeis.org

2, 17, 57, 134, 260, 447, 707, 1052, 1494, 2045, 2717, 3522, 4472, 5579, 6855, 8312, 9962, 11817, 13889, 16190, 18732, 21527, 24587, 27924, 31550, 35477, 39717, 44282, 49184, 54435, 60047, 66032, 72402, 79169, 86345, 93942, 101972, 110447, 119379
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

a(n) = Sum_{k=1..n} (4*n*k - n - k), sums of rows of the triangle in A125199.
A003415(A003415(a(n))) = 2*A016969(n-1).

Crossrefs

Programs

  • Magma
    [n*(4*n^2 +n-1)div 2:n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{2,17,57,134},40] (* Harvey P. Dale, Feb 05 2013 *)

Formula

a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - R. J. Mathar, Feb 12 2010
G.f.: x*(2+9*x+x^2)/(x-1)^4. - R. J. Mathar, Feb 12 2010
a(n) = Sum_{i=1..n} A033568(i). - Bruno Berselli, Jul 22 2013

Extensions

Definition corrected by Vincenzo Librandi, Dec 27 2010

A033589 a(n) = (2*n-1)*(3*n-1)*(4*n-1).

Original entry on oeis.org

-1, 6, 105, 440, 1155, 2394, 4301, 7020, 10695, 15470, 21489, 28896, 37835, 48450, 60885, 75284, 91791, 110550, 131705, 155400, 181779, 210986, 243165, 278460, 317015, 358974, 404481, 453680, 506715
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n-1)*(3*n-1)*(4*n-1): n in [0..30]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    seq( mul(j*n-1, j=2..4), n=0..30); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[Times@@(n*Range[2,4]-1),{n,0,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{-1,6,105,440},30] (* Harvey P. Dale, Sep 22 2014 *)
  • PARI
    vector(31, n, my(m=n-1); prod(j=2,4, j*m-1) ) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [product(j*n-1 for j in (2..4)) for n in (0..30)] # G. C. Greubel, Mar 05 2020

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 22 2014
G.f.: (-1 +10*x +75*x^2 +60*x^3)/(1-x)^4. - R. J. Mathar, Feb 06 2017
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^3 * Pochhammer(2 - 1/n, 3) = Product_{j=2..4} (j*n-1).
E.g.f.: (-1 + 7*x + 46*x^2 + 24*x^3)*exp(x). (End)
Sum_{n>=1} 1/a(n) = (sqrt(3)/2-1)*Pi + 8*log(2) - 9*log(3)/2. - Amiram Eldar, Feb 22 2022

A033590 a(n) = (2*n-1)*(3*n-1)*(4*n-1)*(5*n-1).

Original entry on oeis.org

1, 24, 945, 6160, 21945, 57456, 124729, 238680, 417105, 680680, 1052961, 1560384, 2232265, 3100800, 4201065, 5571016, 7251489, 9286200, 11721745, 14607600, 17996121, 21942544, 26504985, 31744440
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1): n in [0..40]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    seq( mul(j*n-1, j=2..5), n=0..40); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1), {n,0,40}] (* G. C. Greubel, Mar 05 2020 *)
  • PARI
    vector(41, n, my(m=n-1); prod(j=2,5, j*m-1) ) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [product(j*n-1 for j in (2..5)) for n in (0..40)] # G. C. Greubel, Mar 05 2020

Formula

G.f.: (1 + 19*x + 835*x^2 + 1665*x^3 + 360*x^4)/(1-x)^5. - R. J. Mathar, Feb 06 2017
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^4 * Pochhammer(2 - 1/n, 4) = Product_{j=2..5} (j*n-1).
E.g.f.: (1 + 23*x + 449*x^2 + 566*x^3 + 120*x^4)*exp(x). (End)

A104586 Pentagonal wave sequence triangle.

Original entry on oeis.org

1, 7, 2, 12, 5, 1, 26, 15, 7, 2, 35, 22, 12, 5, 1, 57, 40, 26, 15, 7, 2, 70, 51, 35, 22, 12, 5, 1, 100, 77, 57, 40, 26, 15, 7, 2
Offset: 1

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Row sums = A086500: 1, 9, 18, 50, 75, 147, 196...

Examples

			The first few rows are:
1;
7, 2;
12, 5, 1;
26, 15, 7, 2;
35, 22, 12, 5, 1;
57, 40, 26, 15, 7, 2;
70, 51, 35, 22, 12, 5, 1;
...
		

Crossrefs

Formula

Odd columns are terms of A104584, pentagonal wave sequence of the first kind, (starting with 1): 1, 7, 12, 26, 35, 57, 70... Even columns are terms of A104585, pentagonal wave sequence of the second kind (starting with 2): 2, 5, 15, 22, 40, 51... Odd rows are pentagonal numbers (A000326) starting with "1" at the right. Even rows are second pentagonal numbers (A005449) starting with 2 at the right. The triangle is extracted from a matrix product A * B, A = [1; 1, 2; 1, 2, 1; 1, 2, 1, 2;...], B = [1; 3, 1; 5, 3, 1; 7, 5, 3, 1;...] (both infinite lower triangular matrices, with the rest zeros).
Previous Showing 11-14 of 14 results.