A125200
a(n) = n*(4*n^2 + n - 1)/2.
Original entry on oeis.org
2, 17, 57, 134, 260, 447, 707, 1052, 1494, 2045, 2717, 3522, 4472, 5579, 6855, 8312, 9962, 11817, 13889, 16190, 18732, 21527, 24587, 27924, 31550, 35477, 39717, 44282, 49184, 54435, 60047, 66032, 72402, 79169, 86345, 93942, 101972, 110447, 119379
Offset: 1
-
[n*(4*n^2 +n-1)div 2:n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
-
LinearRecurrence[{4,-6,4,-1},{2,17,57,134},40] (* Harvey P. Dale, Feb 05 2013 *)
A033589
a(n) = (2*n-1)*(3*n-1)*(4*n-1).
Original entry on oeis.org
-1, 6, 105, 440, 1155, 2394, 4301, 7020, 10695, 15470, 21489, 28896, 37835, 48450, 60885, 75284, 91791, 110550, 131705, 155400, 181779, 210986, 243165, 278460, 317015, 358974, 404481, 453680, 506715
Offset: 0
-
[(2*n-1)*(3*n-1)*(4*n-1): n in [0..30]]; // G. C. Greubel, Mar 05 2020
-
seq( mul(j*n-1, j=2..4), n=0..30); # G. C. Greubel, Mar 05 2020
-
Table[Times@@(n*Range[2,4]-1),{n,0,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{-1,6,105,440},30] (* Harvey P. Dale, Sep 22 2014 *)
-
vector(31, n, my(m=n-1); prod(j=2,4, j*m-1) ) \\ G. C. Greubel, Mar 05 2020
-
[product(j*n-1 for j in (2..4)) for n in (0..30)] # G. C. Greubel, Mar 05 2020
A033590
a(n) = (2*n-1)*(3*n-1)*(4*n-1)*(5*n-1).
Original entry on oeis.org
1, 24, 945, 6160, 21945, 57456, 124729, 238680, 417105, 680680, 1052961, 1560384, 2232265, 3100800, 4201065, 5571016, 7251489, 9286200, 11721745, 14607600, 17996121, 21942544, 26504985, 31744440
Offset: 0
-
[(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1): n in [0..40]]; // G. C. Greubel, Mar 05 2020
-
seq( mul(j*n-1, j=2..5), n=0..40); # G. C. Greubel, Mar 05 2020
-
Table[(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1), {n,0,40}] (* G. C. Greubel, Mar 05 2020 *)
-
vector(41, n, my(m=n-1); prod(j=2,5, j*m-1) ) \\ G. C. Greubel, Mar 05 2020
-
[product(j*n-1 for j in (2..5)) for n in (0..40)] # G. C. Greubel, Mar 05 2020
A104586
Pentagonal wave sequence triangle.
Original entry on oeis.org
1, 7, 2, 12, 5, 1, 26, 15, 7, 2, 35, 22, 12, 5, 1, 57, 40, 26, 15, 7, 2, 70, 51, 35, 22, 12, 5, 1, 100, 77, 57, 40, 26, 15, 7, 2
Offset: 1
The first few rows are:
1;
7, 2;
12, 5, 1;
26, 15, 7, 2;
35, 22, 12, 5, 1;
57, 40, 26, 15, 7, 2;
70, 51, 35, 22, 12, 5, 1;
...
Comments