cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A318984 Theta series of quadratic form x^2 + x*y + 17*y^2.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 4, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0
Offset: 0

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Number of integer solutions (x, y) to x^2 + x*y + 17*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-67)].

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 4*x^17 + 4*x^19 + 4*x^23 + 2*x^25 + 4*x^29 + 2*x^36 + 4*x^37 + 4*x^47 + 2*x^49 + 4*x^59 + 2*x^64 + 2*x^67 + 4*x^68 + 4*x^71 + 4*x^73 + 4*x^76 + ...
		

Crossrefs

Cf. A318982.
Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43), this sequence (d=-67), A318985 (d=-163).

Programs

  • Mathematica
    Join[{1}, a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-67, #] &]];
    2 Table[a[n], {n, 1, 110}]] (* Vincenzo Librandi, Sep 10 2018 *)
  • PARI
    a(n) = if(n, 2*sumdiv(n, d, kronecker(-67, d)), 1)

Formula

G.f.: 1 + 2 * Sum_{k>0} Kronecker(-67, k) * x^k / (1 - x^k).
a(n) = 2 * A318982(n) unless n = 0.
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(67^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if Kronecker(-67, p) = -1, b(p^e) = e + 1 if Kronecker(-67, p) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(67) = 0.767613... . - Amiram Eldar, Dec 16 2023

A318985 Theta series of quadratic form x^2 + x*y + 41*y^2.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0
Offset: 0

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Number of integer solutions (x, y) to x^2 + x*y + 41*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-163)].

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + 2*x^36 + 4*x^41 + 4*x^43 + 4*x^47 + 2*x^49 + 4*x^53 + 4*x^61 + 2*x^64 + 4*x^71 + ...
		

Crossrefs

Cf. A318983.
Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43), A318984 (d=-67), this sequence (d=-163).

Programs

  • Mathematica
    Join[{1}, a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-163, #] &]];
    2 Table[a[n], {n, 1, 110}]] (* Vincenzo Librandi, Sep 10 2018 *)
  • PARI
    a(n) = if(n, 2*sumdiv(n, d, kronecker(-163, d)), 1)

Formula

G.f.: 1 + 2 * Sum_{k>0} Kronecker(-163, k) * x^k / (1 - x^k).
a(n) = 2 * A318983(n) unless n = 0.
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(163^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if Kronecker(-163, p) = -1, b(p^e) = e + 1 if Kronecker(-163, p) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(163) = 0.49213705... . - Amiram Eldar, Dec 16 2023

A139093 Expansion of phi(q) * phi(-q^2) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, -2, -4, 2, 0, -4, 0, 2, 6, 0, -4, 4, 0, 0, 0, 2, 4, -6, -4, 0, 0, -4, 0, 4, 2, 0, -8, 0, 0, 0, 0, 2, 8, -4, 0, 6, 0, -4, 0, 0, 4, 0, -4, 4, 0, 0, 0, 4, 2, -2, -8, 0, 0, -8, 0, 0, 8, 0, -4, 0, 0, 0, 0, 2, 0, -8, -4, 4, 0, 0, 0, 6, 4, 0, -4, 4, 0, 0, 0, 0, 10, -4, -4, 0, 0, -4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, -2, -12, 2, 0, -8, 0
Offset: 0

Views

Author

Michael Somos, Apr 08 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = 1 + 2*q - 2*q^2 - 4*q^3 + 2*q^4 - 4*q^6 + 2*q^8 + 6*q^9 - 4*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 105); A[1] + 2*A[2] - 2*A[3] - 4*A[4] + 2*A[5] - 4*A[7] + 2*A[9] + 6*A[10] - 4*A[12] + 4*A[13] + 4*A[16]; /* Michael Somos, Aug 29 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^2], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^7 / (QPochhammer[ q]^2 QPochhammer[ q^4]^3), {q, 0, n}]; (* Michael Somos, Feb 18 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^Quotient[n, 2] Sum[ JacobiSymbol[ -2, d], {d, Divisors @ n}]]; (* Michael Somos, Feb 18 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^(n\2) * sumdiv(n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3), n))};
    

Formula

Expansion of eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [ 2, -5, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A112603.
G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 + x^(2*k-1))^2 / (1 + x^(2*k)).
a(8*n + 5) = a(8*n + 7) = 0.
a(n) = (-1)^n * A082564(n). a(2*n) = A133692(n). a(2*n + 1) = 2 * A125095(n). a(4*n) = a(8*n) = A033715(n). a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = -4 * A033761(n).

A320246 Expansion of Product_{k=1..12} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 106, 152, 200, 252, 360, 456, 564, 770, 940, 1178, 1532, 1852, 2256, 2858, 3430, 4100, 5086, 5982, 7076, 8612, 10040, 11672, 13960, 16068, 18496, 21866, 24796, 28288, 32924, 37074, 41876, 48156, 53732, 60014, 68546, 75836, 83996
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_12) to the equation a_1^2 + 2*a_2^2 + ... + 12*a_12^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), A320242 (m=10), this sequence (m=12), A320247 (m=16).
Cf. A320067.

A320247 Expansion of Product_{k=1..16} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 106, 152, 202, 258, 370, 478, 600, 822, 1032, 1310, 1720, 2140, 2656, 3418, 4222, 5172, 6510, 7922, 9636, 11928, 14424, 17268, 21088, 25236, 29996, 36222, 42824, 50544, 60252, 70830, 82832, 97732, 113956, 132242, 154866, 179164, 206396
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_16) to the equation a_1^2 + 2*a_2^2 + ... + 16*a_16^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), A320242 (m=10), A320246 (m=12), this sequence (m=16).
Cf. A320067.

A156384 The number of solutions to x^2 + y^2 + 2*z^2 = n in nonnegative integers x,y,z.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 2, 2, 4, 4, 2, 4, 4, 0, 2, 3, 4, 6, 4, 4, 2, 4, 2, 2, 6, 4, 6, 6, 2, 0, 4, 2, 6, 8, 2, 7, 6, 4, 2, 4, 4, 6, 6, 4, 6, 0, 4, 4, 6, 6, 4, 10, 4, 6, 6, 0, 6, 10, 4, 6, 6, 0, 6, 3, 4, 8, 8, 8, 4, 6, 2, 6, 10, 4, 6, 10, 4, 0, 4, 4, 8, 14, 6, 6, 8, 4, 6, 4, 6, 10, 6, 6, 6, 0, 2, 2, 12, 8, 8
Offset: 0

Views

Author

R. H. Hardin Feb 09 2009

Keywords

Comments

Also, the number of 4X4 matrices composed of squares of integers, symmetric under 90 degree rotation, with all rows summing to n. Such matrices have the form:
z^2 x^2 y^2 z^2
y^2 z^2 z^2 x^2
x^2 z^2 z^2 y^2
z^2 y^2 x^2 z^2
with x^2 + y^2 + 2*z^2 = n.

Examples

			All matrices for n=9:
...0.0.9.0...0.9.0.0...4.0.1.4...4.1.0.4
...9.0.0.0...0.0.0.9...1.4.4.0...0.4.4.1
...0.0.0.9...9.0.0.0...0.4.4.1...1.4.4.0
...0.9.0.0...0.0.9.0...4.1.0.4...4.0.1.4
		

Crossrefs

Formula

a(n) = ( A014455(n) + 2*A033715(n) + A004018(n) + A000122(n/2) + 2*A000122(n) + A000007(n) )/8. - Max Alekseyev, Sep 29 2012
G.f.: (1 + theta_3(q))^2*(1 + theta_3(q^2))/8, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018

Extensions

More general definition from Max Alekseyev, Sep 29 2012

A213024 The number of solutions to x^2 + y^2 + 2*z^2 = n in positive integers x,y,z.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 1, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 6, 0, 0, 4, 0, 2, 4, 2, 3, 4, 2, 2, 2, 0, 6, 4, 2, 4, 0, 4, 2, 4, 2, 0, 8, 2, 2, 6, 0, 2, 8, 2, 6, 4, 0, 6, 1, 0, 4, 6, 4, 4, 6, 2, 2, 6, 2, 4, 8, 4, 0, 4, 2, 2, 10, 4, 6, 4, 2, 6, 2, 2, 8, 6, 6, 6, 0, 2, 0, 8, 6, 2, 9
Offset: 0

Views

Author

Max Alekseyev, Sep 29 2012

Keywords

Crossrefs

Programs

  • PARI
    N=166; x='x+O('x^N);
    T(x)=sum(k=1, 1+sqrtint(N), x^(k*k) );
    gf=T(x)^2 * T(x^2);
    v=Vec('a0 + gf );  v[1]=0;  v
    /* Joerg Arndt, Oct 01 2012 */

Formula

a(n) = ( A014455(n) - 2*A033715(n) - A004018(n) + A000122(n/2) + 2*A000122(n) - A000007(n) )/8.
G.f.: T(x)^2 * T(x^2) where T(x) = sum(k>=1, x^(k^2)). [Joerg Arndt, Oct 01 2012]

A226225 Expansion of phi(q) * phi(q^8) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 2, 8, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 0, 0, 10, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, May 31 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 2*q^8 + 6*q^9 + 4*q^12 + 2*q^16 + 4*q^17 + 4*q^24 + 2*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^8], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * (n%4 < 2) * sumdiv( n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^16 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^8 + A) * eta(x^32 + A))^2, n))};

Formula

Expansion of (eta(q^2) * eta(q^16))^5 / (eta(q) * eta(q^4) * eta(q^8) * eta(q^32))^2 in powers of q.
Euler transform of period 32 sequence [2, -3, 2, -1, 2, -3, 2, 1, 2, -3, 2, -1, 2, -3, 2, -4, 2, -3, 2, -1, 2, -3, 2, 1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} (x^8)^k^2).
a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0. a(4*n) = a(8*n) = A033715(n). a(4*n + 1) = A033715(4*n + 1). a(8*n + 1) = 2 * A112603(n). a(8*n + 4) = 2 * A113411(n).
(-1)^n * a(n) = A242609(n). - Michael Somos, Feb 20 2015

A242609 Expansion of phi(-q) * phi(q^8) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 0, 0, 2, -6, 0, 0, 4, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 2, -8, 0, 0, 6, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 6, -4, 0, 0, 4, 0, 0, 0, 0, -10, 0
Offset: 0

Views

Author

Michael Somos, May 19 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 2*q^4 + 2*q^8 - 6*q^9 + 4*q^12 + 2*q^16 - 4*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^8], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^n * (n%4 < 2) * sumdiv( n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^16 + A)^5 / (eta(x^2 + A) * eta(x^8 + A)^2 * eta(x^32 + A)^2), n))};

Formula

Expansion of eta(q)^2 * eta(q^16)^5 / (eta(q^2) * eta(q^8)^2 * eta(q^32)^2) in powers of q.
G.f.: (Sum_{k in Z} (-x)^k^2) * (Sum_{k in Z} (x^8)^k^2).
a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0. a(4*n) = a(8*n) = A033715(n). a(8*n + 1) = -2 * A112603(n). a(8*n + 4) = 2 * A113411(n).
a(n) = (-1)^n * A226225(n).

A244540 Expansion of phi(q) * (phi(q) + phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 3, 2, 3, 4, 2, 0, 3, 5, 4, 2, 2, 4, 0, 0, 3, 6, 5, 2, 4, 0, 2, 0, 2, 7, 4, 4, 0, 4, 0, 0, 3, 4, 6, 0, 5, 4, 2, 0, 4, 6, 0, 2, 2, 4, 0, 0, 2, 3, 7, 4, 4, 4, 4, 0, 0, 4, 4, 2, 0, 4, 0, 0, 3, 8, 4, 2, 6, 0, 0, 0, 5, 6, 4, 2, 2, 0, 0, 0, 4, 7, 6, 2, 0, 8, 2
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*q + 3*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 2*q^6 + 3*q^8 + 5*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + 3*A[2] + 3*A[3];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {3, 0, -1, 0, 1, 0, -3, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 3, 0, -1, 0, 1, 0, -3][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A + subst(A, x, x^2)) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + 3*A[1] + 3*A[2];
    

Formula

Expansion of f(-q^3, -q^5)^2 * phi(q) / psi(-q) = f(-q^3, -q^5)^2 * chi(q)^3 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [3, -3, 1, 0, 1, -3, 3, -2, ...].
Moebius transform is period 8 sequence [3, 0, -1, 0, 1, 0, -3, 0, ...].
Convolution product of A244526 and A107635. Convolution product of A000122 and A093709.
a(n) = (A004018(n) + A033715(n)) / 2 = A244543(2*n).
a(2*n) = a(n). a(8*n + 3) = 2*A033761(n). a(8*n + 5) = 4*A053692(n). a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi*(1 + 1/sqrt(2))/2 = 2.681517... . - Amiram Eldar, Jun 08 2025
Previous Showing 21-30 of 40 results. Next