cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A115258 Isolated primes in Ulam's lattice (1, 2, ... in spiral).

Original entry on oeis.org

83, 101, 127, 137, 163, 199, 233, 311, 373, 443, 463, 491, 541, 587, 613, 631, 641, 659, 673, 683, 691, 733, 757, 797, 859, 881, 911, 919, 953, 971, 991, 1013, 1051, 1061, 1103, 1109, 1117, 1193, 1201, 1213, 1249, 1307, 1319, 1409, 1433, 1459, 1483, 1487
Offset: 1

Views

Author

Keywords

Comments

Isolated prime numbers have no adjacent primes in a lattice generated by writing consecutive integers starting from 1 in a spiral distribution. If n0 is the number of isolated primes and p the number of primes less than N, the ratio n0/p approaches 1 as N increases. If n1, n2, n3, n4 denote the number of primes with respectively 1, 2, 3, 4 adjacent primes in the lattice, the ratios n1/n0, n2/n1, n3/n2, n4/n3 approach 0 as N increases. The limits stand for any 2D lattice of integers generated by a priori criteria (i.e., not knowing distributions of primes) as Ulam's lattice.

Examples

			83 is an isolated prime as the adjacent numbers in lattice 50, 51, 81, 82, 84, 123, 124, 125 are not primes.
From _Michael De Vlieger_, Dec 22 2015: (Start)
Spiral including n <= 17^2 showing only primes, with the isolated primes in parentheses (redrawn by _Jon E. Schoenfield_, Aug 06 2017):
  257 .  .  .  .  . 251 .  .  .  .  .  .  .  .  . 241
   . 197 .  .  . 193 . 191 .  .  .  .  .  .  .  .  .
   .  .  .  .  .  .  .  . 139 .(137).  .  .  .  . 239
   .(199).(101).  .  . 97  .  .  .  .  .  .  . 181 .
   .  .  .  .  .  .  .  . 61  . 59  .  .  . 131 .  .
   .  .  . 103 . 37  .  .  .  .  . 31  . 89  . 179 .
  263 . 149 . 67  . 17  .  .  . 13  .  .  .  .  .  .
   .  .  .  .  .  .  .  5  .  3  . 29  .  .  .  .  .
   .  . 151 .  .  . 19  .  .  2 11  . 53  .(127).(233)
   .  .  . 107 . 41  .  7  .  .  .  .  .  .  .  .  .
   .  .  .  . 71  .  .  . 23  .  .  .  .  .  .  .  .
   .  .  . 109 . 43  .  .  . 47  .  .  .(83) . 173 .
  269 .  .  . 73  .  .  .  .  . 79  .  .  .  .  . 229
   .  .  .  .  . 113 .  .  .  .  .  .  .  .  .  .  .
  271 . 157 .  .  .  .  .(163).  .  . 167 .  .  . 227
   . 211 .  .  .  .  .  .  .  .  .  .  . 223 .  .  .
   .  .  .  . 277 .  .  . 281 . 283 .  .  .  .  .  .
(End)
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 22.

Crossrefs

Cf. A113688 (isolated semiprimes in the semiprime spiral), A156859.

Programs

  • Maple
    # A is Ulam's lattice
    if (isprime(A[x,y])and(not(isprime(A[x+1,y]) or isprime(A[x-1,y])or isprime(A[x,y+1])or isprime(A[x,y-1])or isprime(A[x-1,y-1])or isprime(A[x+1,y+1])or isprime(A[x+1,y-1])or isprime(A[x-1,y+1])))) then print (A[x,y]) ; fi;
  • Mathematica
    spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; f[spiral@ 21 /. n_ /; CompositeQ@ n -> 0] (* Michael De Vlieger, Dec 22 2015, Version 10 *)

A033990 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the negative y-axis.

Original entry on oeis.org

0, 1, 1, 8, 3, 7, 6, 2, 1, 5, 1, 1, 6, 2, 2, 1, 3, 4, 0, 4, 5, 3, 6, 7, 0, 8, 9, 1, 4, 6, 1, 2, 7, 1, 1, 4, 4, 8, 1, 7, 4, 7, 2, 0, 8, 8, 2, 4, 4, 1, 2, 8, 4, 6, 3, 2, 7, 3, 3, 7, 3, 2, 4, 1, 2, 3, 4, 7, 5, 6, 5, 2, 0, 1, 5, 8, 9, 8, 6, 4, 1, 7, 6, 1, 7, 8, 7, 7, 5, 1, 8, 4, 7, 6, 9, 2, 2, 3, 9, 0, 1, 0, 1, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Consider array of digits 0_(1)23456789(1)0111213141516171(8)1920212223...; in this array add to n-th pointer 8*n+1 to get next pointer. E.g., n=1 so n+(8*1+1)=10 -> n=10 so n+(8*2+1)=27 -> n=27 so ... etc. - comment from Patrick De Geest.

Examples

			The spiral begins
                 2---3---2---4---2---5---2
                 |                       |
                 2   1---3---1---4---1   6
                 |   |               |   |
                 2   2   4---5---6   5   2
                 |   |   |       |   |   |
                 1   1   3   0   7   1   7
                 |   |   |   |   |   |   |
                 2   1   2---1   8   6   2
                 |   |           |   |   |
                 0   1---0---1---9   1   8
                 |                   |   |
                 2---9---1---8---1---7   2
                                         |
                             3---0---3---9
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading downwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033953, A033988, A033989. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2-3*n-1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Patrick De Geest, Oct 15 1999
Edited by Charles R Greathouse IV, Nov 01 2009

A033953 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the positive x-axis.

Original entry on oeis.org

0, 7, 1, 7, 4, 2, 8, 1, 1, 3, 1, 2, 0, 2, 3, 1, 3, 4, 6, 5, 5, 5, 7, 7, 8, 8, 9, 6, 8, 1, 1, 1, 2, 3, 1, 8, 0, 6, 1, 7, 0, 9, 2, 8, 4, 3, 2, 1, 1, 7, 2, 6, 2, 1, 3, 3, 5, 5, 3, 2, 2, 0, 4, 3, 2, 5, 4, 6, 5, 0, 5, 1, 1, 6, 5, 8, 1, 2, 6, 7, 3, 8, 7, 8, 9, 5, 7, 1, 8, 2, 8, 6, 1, 9, 9, 3, 6, 7, 9, 0, 1, 4, 6, 1, 0
Offset: 0

Views

Author

Keywords

Examples

			  2---3---2---4---2---5---2
  |                       |
  2   1---3---1---4---1   6
  |   |               |   |
  2   2   4---5---6   5   2
  |   |   |       |   |   |
  1   1   3   0   7   1   7
  |   |   |   |   |   |   |
  2   1   2---1   8   6   2
  |   |           |   |   |
  0   1---0---1---9   1   8
  |                   |   |
  2---9---1---8---1---7   2
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading rightwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033988, A033989, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2 + 3*n - 1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009

A113688 Isolated semiprimes in the semiprime square spiral.

Original entry on oeis.org

65, 74, 249, 295, 309, 355, 422, 511, 545, 667, 669, 758, 926, 943, 979, 998, 1099, 1167, 1186, 1322, 1457, 1469, 1561, 1585, 1658, 1711, 1774, 1779, 1835, 1891, 1959, 1961, 1963, 2021, 2038, 2066, 2155, 2186, 2191, 2206, 2271, 2329, 2342
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2005

Keywords

Comments

Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam's marking the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by marking the semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence lists the isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes. A113689 gives an enumeration of the number of semiprimes in clumps of size > 1 through n^2.
The squares of twin primes occupy adjacent points along the southeast diagonal, so none are isolated. Thus the only isolated semiprimes in the spiral that are squares are the squares of "isolated primes" (A007510). The first square in this sequence is a(1473) = 66049 = 257^2. - Jon E. Schoenfield, Aug 12 2018

Examples

			Spiral example:
.
  17--16--15--14--13
   |               |
  18   5---4---3  12
   |   |       |   |
  19   6   1---2  11
   |   |           |
  20   7---8---9--10
   |
  21--22--23--24--25
.
From _Michael De Vlieger_, Dec 22 2015: (Start)
Spiral including n <= 121 showing only semiprimes; the isolated semiprimes appear in parentheses:
.
    .---.---.---.---.---.--95--94--93---.--91
    |                                       |
    . (65)--.---.--62---.---.---.--58--57   .
    |   |                               |   |
    .   .   .---.--35--34--33---.---.   .   .
    |   |   |                       |   |   |
    .   .  38   .---.--15--14---.   .  55   .
    |   |   |   |               |   |   |   |
    .   .  39   .   .---4---.   .   .   .  87
    |   |   |   |   |       |   |   |   |   |
  106  69   .   .   6   .---.   .   .   .  86
    |   |   |   |   |           |   |   |   |
    .   .   .   .   .---.---9--10   .   .  85
    |   |   |   |                   |   |   |
    .   .   .  21--22---.---.--25--26  51   .
    |   |   |                           |   |
    .   .   .---.---.--46---.---.--49---.   .
    |   |                                   |
    .   .-(74)--.---.--77---.---.---.---.--82
    |
  111---.---.---.-115---.---.-118-119---.-121
.
(End)
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

Crossrefs

Cf. A115258 (isolated primes in Ulam's lattice).

Programs

  • Mathematica
    spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; t = spiral@ 26 /. n_ /; PrimeOmega@ n != 2 -> 0; f@ t (* Michael De Vlieger, Dec 21 2015, Version 10 *)

Extensions

Corrected and extended by Alois P. Heinz, Jan 02 2011

A113689 Number of semiprimes in clumps of size > 1 through n^2 in the semiprime spiral.

Original entry on oeis.org

0, 0, 2, 6, 9, 13, 17, 21, 23, 31, 37, 45, 54, 59, 72, 77, 83, 93, 104, 116, 125, 140, 150, 164, 180, 188, 203, 219, 236, 255, 272, 287, 301, 317, 334, 354, 378, 403, 419, 430, 450, 475, 498, 521, 542, 560, 588, 608, 626, 652, 677, 698
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2005

Keywords

Comments

Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam coloring in the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by coloring in all semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence, A113689, gives an enumeration of the number of semiprimes in clumps of size > 1 through n^2, not looking past the square boundary. A113688 gives isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes.

Examples

			a(3) = 2 because there is one visible clump through 3^2 = 9, {4,6}, which two semiprimes are diagonally connected.
a(4) = 6 because there are 6 semiprimes in the 2 visible clumps through 4^2 = 16, {4, 6, 14, 15}, {9, 10}.
a(5) = 9 because there are 9 semiprimes in the 3 visible clumps through 5^2 = 25, {4, 6, 14, 15}, {9, 10, 25}, {21, 22}.
......................
... 17 16 15 14 13 ...
... 18  5  4  3 12 ...
... 19  6  1  2 11 ...
... 20  7  8  9 10 ...
... 21 22 23 24 25 ...
......................
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

Crossrefs

Extensions

Corrected and extended by Alois P. Heinz, Jan 02 2011
Previous Showing 11-15 of 15 results.