cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A361337 Numbers that reach 0 after a suitable series of split-and-multiply operations (see Comments for precise definition).

Original entry on oeis.org

0, 10, 20, 25, 30, 40, 45, 50, 52, 54, 55, 56, 58, 59, 60, 65, 69, 70, 78, 80, 85, 87, 90, 95, 96, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 115, 120, 125, 128, 129, 130, 134, 135, 136, 138, 140, 144, 145, 150, 152, 153, 154, 155, 156, 157, 158, 159
Offset: 1

Views

Author

N. J. A. Sloane, Apr 01 2023, based on a posting to the Sequence Fans mailing list by Eric Angelini, Mar 20 2023

Keywords

Comments

We always split the integer N into two integers, then multiply them (and iterate). For example, 2023 can be split into 20 and 23 (producing 20*23 = 460), or split into 202 and 3 (producing 202*3 = 606). The split 2 and 023 is forbidden, as 023 is not an integer (but 460 can be split into 46 and 0 as 0 is an integer).
The sequence lists numbers which reach 0 after a suitable sequence of splits and multiplications.
If we multiply ALL the digits at each step, we get A034048 (115 is the first term where they differ).
The complement (A361978) appears to be finite, containing only 219 members, the largest being 3111. - Michael S. Branicky, Apr 02 2023
More precisely, {811, 911, 913, 921, 1111, 1112, 1113, 1121, 1122, 1131, 1211, 1231, 1261, 1311, 1321, 1612, 2111, 2121, 2211, 3111} are the only numbers not in the sequence, between 792 and at least 10^7. - M. F. Hasler, Apr 05 2023

Examples

			We see that 115 reaches 0 when split into 11*5: 11*5 = 55 -> 5*5 = 25 -> 2*5 = 10 -> 1*0 = 0.
		

Crossrefs

Supersequence of A011540.

Programs

  • PARI
    select( {is_A361337(n)=!vecmin(digits(n))|| for(p=1,logint(n,10), is_A361337(vecprod(divrem(n,10^p)))&& return(1))}, [1..160]) \\ M. F. Hasler, Apr 05 2023
  • Python
    def ok(n):
        if n < 10: return n == 0
        s = str(n)
        if "0" in s: return True
        return any(ok(int(s[:i])*int(s[i:])) for i in range(1, len(s)))
    print([k for k in range(116) if ok(k)]) # Michael S. Branicky, Apr 02 2023
    
  • Python
    ok = lambda n: '0' in (s:=str(n)) or any(ok(int(s[:i])*int(s[i:])) for i in range(1,len(s))) # M. F. Hasler, Apr 05 2023
    

Formula

a(2894 + k) = 3112 + k for all k >= 0 (conjectured). - M. F. Hasler, Apr 05 2023

Extensions

a(38) and beyond from Michael S. Branicky, Apr 02 2023

A263470 Total number of positive integers < 10^n with multiplicative digital root value 0.

Original entry on oeis.org

0, 24, 476, 6739, 82401, 902608, 9394517, 96122290, 975700392, 9854082822, 99180099587, 995679223590, 9977627937023, 99879659224379, 999321444658475, 9996118748668338, 99978099721506172, 999879067589400315, 9999346524827012003, 99996542810942397874
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263476. - Michel Marcus, Oct 22 2015

Crossrefs

Programs

  • Mathematica
    Length@ Select[Range[10^# - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 0 &] & /@ Range@ 6 (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 0, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

a(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + A263473(n) + A263474(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).

Extensions

a(9)-a(20) from Hiroaki Yamanouchi, Oct 25 2015

A263476 Total number of n-digit positive integers with multiplicative digital root value 0.

Original entry on oeis.org

0, 24, 452, 6263, 75662, 820207, 8491909, 86727773, 879578102, 8878382430, 89326016765, 896499124003, 8981948713433, 89902031287356, 899441785434096, 8996797304009863, 89981980972837834, 899900967867894143, 8999467457237611688, 89997196286115385871
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263470.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range[0, 10^6 - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 0 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 0, 1, 0));  \\ Altug Alkan, Oct 19 2015

Formula

a(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(20) from Hiroaki Yamanouchi, Oct 25 2015

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A117678 Squares for which the multiplicative digital root is also a square.

Original entry on oeis.org

0, 1, 4, 9, 25, 100, 169, 196, 225, 256, 400, 529, 576, 625, 676, 900, 961, 1024, 1089, 1156, 1225, 1296, 1521, 1600, 2025, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3481, 3600, 3844, 3969, 4096, 4225, 4356, 4489, 4900, 5041, 5184, 5329
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 12 2006

Keywords

Comments

From Robert Israel, Oct 22 2015: (Start)
1, 9, and squares in A034048 and A034051.
Are there infinitely many squares in A034051? (End)

Crossrefs

Programs

  • Maple
    A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A117678 := proc(n) option remember: local k, m: if(n=1)then return 0:fi: for k from procname(n-1)+1 do m:=k^2: while(length(m)>1)do m:=A007954(m): od: if(m in {0,1,4,9})then return k: fi: od: end: seq(A117678(n)^2, n=1..47); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Select[Range[0, 73]^2, IntegerQ@ Sqrt[FixedPoint[Times @@ IntegerDigits@ # &, #] &@ #] &] (* Michael De Vlieger, Oct 22 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    for(n=0, 100, if(issquare(t(n^2)), print1(n^2, ", "))); \\ Altug Alkan, Oct 22 2015

Extensions

Offset and some terms corrected by Nathaniel Johnston, May 05 2011

A199977 Primes whose multiplicative digital root is 0.

Original entry on oeis.org

59, 101, 103, 107, 109, 239, 251, 257, 269, 293, 307, 349, 353, 401, 409, 439, 457, 479, 503, 509, 521, 523, 541, 547, 563, 569, 577, 587, 599, 601, 607, 619, 653, 659, 691, 701, 709, 757, 787, 809, 853, 857, 859, 877, 907, 947, 997, 1009, 1013, 1019, 1021
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A199978 with respect to A034048.

Examples

			Prime 239 is in sequence because 2*3*9 = 45, 4*5 = 20, 2*0 = 0.
		

Crossrefs

Cf. A199978 (nonprime numbers whose multiplicative digital root is 0).

Programs

  • Maple
    mdr:= proc(n) local L,r;
      r:= n;
      while r >= 10 do
        r:= convert(convert(r,base,10),`*`)
      od;
      r
    end proc:
    select(mdr=0, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Feb 28 2021
  • Mathematica
    digRoot[n_] := Module[{k = n}, While[k > 9, k = Times @@ IntegerDigits[k]]; k]; Select[Range[1200], PrimeQ[#] && digRoot[#] == 0 &] (* T. D. Noe, Nov 23 2011 *)

A199978 Nonprime numbers whose multiplicative digital root is 0.

Original entry on oeis.org

10, 20, 25, 30, 40, 45, 50, 52, 54, 55, 56, 58, 60, 65, 69, 70, 78, 80, 85, 87, 90, 95, 96, 100, 102, 104, 105, 106, 108, 110, 120, 125, 130, 140, 145, 150, 152, 154, 155, 156, 158, 159, 160, 165, 169, 170, 178, 180, 185, 187, 190, 195, 196, 200, 201, 202
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A199977 with respect to A034048.

Examples

			Number 58 is in sequence because 5*8 = 40, 4*0 = 0.
		

Crossrefs

Cf. A199977 (primes whose multiplicative digital root is 0).

Programs

  • Mathematica
    digRoot[n_] := Module[{k = n}, While[k > 9, k = Times @@ IntegerDigits[k]]; k]; Select[Range[300], ! PrimeQ[#] && digRoot[#] == 0 &] (* T. D. Noe, Nov 23 2011 *)

A361978 Complement of A361337.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 116
Offset: 1

Views

Author

Michael S. Branicky, Apr 02 2023

Keywords

Comments

More than the usual number of terms are shown to distinguish the sequence from A034048.
Appears to be finite with 219 members, the largest being 3111.

Crossrefs

Subsequence of A052382.

Programs

  • PARI
    A361978=select( {is_A361978(n)=vecmin(digits(n))&& !for(p=1, logint(n, 10), is_A361978(vecprod(divrem(n, 10^p)))|| return)}, [1..10^5]) \\ Conjecturedly the full list: no terms between 3112 and 10^5. - M. F. Hasler, Apr 05 2023
  • Python
    def ok(n):
        if n < 10: return n != 0
        s = str(n)
        if "0" in s: return False
        return all(ok(int(s[:i])*int(s[i:])) for i in range(1, len(s)))
    print([k for k in range(117) if ok(k)]) # Michael S. Branicky, Apr 02 2023
    
Previous Showing 11-18 of 18 results.