cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A263471 Total number of positive integers < 10^n with multiplicative digital root value 2.

Original entry on oeis.org

1, 9, 77, 543, 3213, 16673, 86093, 503815, 3529057, 25402097, 162303510, 884504882, 4156234265, 17270407962, 65375131342, 232901619970, 807191392546, 2795912956450, 9796747697594, 34556445906044, 120898966116007, 413105921852769, 1363586516014222
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263477.

Crossrefs

Programs

  • Mathematica
    Length@ Select[Range[10^# - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 2 &] & /@ Range@ 6 (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 2, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + a(n) + A000217(n) + A263472(n) + A263473(n) + A263474(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).

Extensions

a(8) from Michael De Vlieger, Oct 19 2015
a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A263477 Total number of n-digit positive integers with multiplicative digital root value 2.

Original entry on oeis.org

1, 8, 68, 466, 2670, 13460, 69420, 417722, 3025242, 21873040, 136901413, 722201372, 3271729383, 13114173697, 48104723380, 167526488628, 574289772576, 1988721563904, 7000834741144, 24759698208450, 86342520209963, 292206955736762, 950480594161453
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263471.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 2 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 2, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + a(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A199986 Numbers with digital product = 2.

Original entry on oeis.org

2, 12, 21, 112, 121, 211, 1112, 1121, 1211, 2111, 11112, 11121, 11211, 12111, 21111, 111112, 111121, 111211, 112111, 121111, 211111, 1111112, 1111121, 1111211, 1112111, 1121111, 1211111, 2111111, 11111112, 11111121, 11111211, 11112111, 11121111, 11211111
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Subsequence of A034049.

Programs

  • Maple
    f:= proc(d) local b,i;
      b:= (10^d-1)/9;
      seq(b+10^i,i=0..d-1);
    end proc:
    seq(f(d),d=1..9); # Robert Israel, Jan 13 2021
  • PARI
    one(n)=if(n,10^n\9,"")
    for(n=0,9,for(m=0,n,print1(one(n-m)2one(m)", "))) \\ Charles R Greathouse IV, Nov 13 2011
    
  • Python
    def athrough(k1s):
      return [int("1"*(i-j)+"2"+"1"*j) for i in range(k1s+1) for j in range(i+1)]
    print(athrough(8)) # Michael S. Branicky, Feb 12 2021

A199980 Primes whose multiplicative digital root is 2.

Original entry on oeis.org

2, 37, 43, 73, 137, 173, 211, 223, 317, 367, 389, 431, 673, 827, 839, 929, 983, 1223, 1279, 1297, 1367, 1447, 1621, 1637, 1693, 1999, 2111, 2161, 2179, 2213, 2269, 2339, 2393, 2663, 2699, 2719, 2791, 2917, 2969, 2971, 3167, 3169, 3221, 3329, 3463, 3499, 3617
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A199981 with respect to A034049, numbers whose multiplicative digital root is 2.

Examples

			Prime 389 is in sequence because 3*8*9=216, 2*1*6 =12, 1*2=2.
		

Crossrefs

Cf. A199981 (nonprime numbers whose multiplicative digital root is 2).
Includes A107612.

Programs

  • Maple
    mdr:= proc(n) option remember;
      local t;
      t:= convert(convert(n,base,10),`*`);
      if t < 10  then t else procname(t) fi
    end proc:
    select(t -> mdr(t) = 2 and isprime(t), [2, seq(i,i=3..10000,2)]); # Robert Israel, Nov 05 2020
  • Mathematica
    t = {}; n = 0; While[Length[t] < 100, n = NextPrime[n]; s = n; While[s >= 10, s = Times @@ IntegerDigits[s]]; If[s == 2, AppendTo[t, n]]]; t (* T. D. Noe, Nov 15 2011 *)
    Select[Prime[Range[600]],FixedPoint[Times@@IntegerDigits[#]&,#]==2&] (* Harvey P. Dale, Mar 28 2012 *)

A199981 Composite numbers whose multiplicative digital root is 2.

Original entry on oeis.org

12, 21, 26, 34, 62, 112, 121, 126, 134, 143, 162, 216, 232, 261, 278, 279, 287, 297, 299, 314, 322, 341, 369, 371, 376, 396, 398, 413, 447, 469, 474, 496, 612, 621, 637, 639, 649, 666, 693, 694, 713, 728, 729, 731, 736, 744, 763, 782, 792, 872, 893, 927, 936
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A199980 with respect to A034049.

Examples

			Number 278 is in sequence because 2*7*8=112, 1*1*2 =2.
		

Crossrefs

Cf. A199980 (primes whose multiplicative digital root is 2).
Cf. A034049 (numbers whose multiplicative digital root is 2).

Programs

  • Mathematica
    t = {}; n = 0; While[Length[t] < 100, n = n + 1; If[! PrimeQ[n], s = n; While[s >= 10, s = Times @@ IntegerDigits[s]]; If[s == 2, AppendTo[t, n]]]]; t (* T. D. Noe, Nov 16 2011 *)
Previous Showing 11-16 of 16 results.