cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A125233 Triangle T(n,k) read by rows, the (n-k)-th term of the k times repeated partial sum of the hexagonal numbers, 0 <= k < n, 0 < n.

Original entry on oeis.org

1, 6, 1, 15, 7, 1, 28, 22, 8, 1, 45, 50, 30, 9, 1, 66, 95, 80, 39, 10, 1, 91, 161, 175, 119, 49, 11, 1, 120, 252, 336, 294, 168, 60, 12, 1, 153, 372, 588, 630, 462, 228, 72, 13, 1, 190, 525, 960, 1218, 1092, 690, 300, 85, 14, 1, 231, 715, 1485, 2178, 2310, 1782, 990, 385, 99, 15, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

Left border = A000384, hexagonal numbers. The following columns are A002412, A002417, A034263, A051947, ...
Row sums = (1, 7, 23, 59, 135, 291, ...) = A126284.
A125232 is the analogous triangle for the pentagonal numbers.

Examples

			First few rows of the triangle:
   1;
   6,   1;
  15,   7,   1;
  28,  22,   8,   1;
  45,  50,  30,   9,  1;
  66,  95,  80,  39, 10,  1;
  91, 161, 175, 119, 49, 11, 1;
  ...
Example: (5,3) = 80 = 30 + 50 = (4,3) + (4,2).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1964, p. 189.

Crossrefs

Programs

  • Maple
    A000384Psum:= proc(n,k) coeftayl( x*(1+3*x)/(1-x)^(3+k),x=0,n) ; end: A125233 := proc(n,k) A000384Psum(n-k,k) ; end: for n from 1 to 15 do for k from 0 to n -1 do printf("%d,",A125233(n,k)) ; od: od: # R. J. Mathar, May 03 2008
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, n (2 n - 1), 1 <= k < n, T[n - 1, k] + T[n - 1, k - 1], True, 0];
    Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Sep 14 2023, after R. J. Mathar *)

Formula

T(n,0)=A000384(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>1. - R. J. Mathar, May 03 2008

Extensions

Edited and extended by R. J. Mathar, May 03 2008, and M. F. Hasler, Sep 29 2012

A059599 Expansion of (3+x)/(1-x)^6.

Original entry on oeis.org

3, 19, 69, 189, 434, 882, 1638, 2838, 4653, 7293, 11011, 16107, 22932, 31892, 43452, 58140, 76551, 99351, 127281, 161161, 201894, 250470, 307970, 375570, 454545, 546273, 652239, 774039, 913384, 1072104, 1252152, 1455608, 1684683, 1941723
Offset: 0

Views

Author

Wolfdieter Lang, Feb 02 2001

Keywords

Crossrefs

Cf. A034263.

Programs

Formula

a(n) = binomial(n+4, 4)*(15+4*n)/5.
G.f.: (3+x)/(1-x)^6.
a(-n-4) = -A034263(n). - Bruno Berselli, Aug 23 2011
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Apr 16 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, May 30 2010

A034273 a(n) = binomial(2*n+6,n+7)*(n^2+7*n+1)/(n+8) = f(n,n+6) where f is given in A034261.

Original entry on oeis.org

0, 1, 19, 186, 1365, 8540, 48348, 255816, 1289739, 6273135, 29683225, 137447310, 625482585, 2806282440, 12443418600, 54633668400, 237871030860, 1028260382994, 4417404967206, 18874729444340, 80265980340370, 339907420551336, 1434074601137640, 6030288337651760
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A034261 (main entry), A034263 - A034275 (other columns and diagonals n -> f(n,n+k)).

Programs

  • Mathematica
    f[a_, b_] := Binomial[a + b, b + 1] (a b + a + 1)/(b + 2); Array[f[#, # + 6] &, 22, 0] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    A034273(n)=binomial(2*n+6, n+7)*(n^2+7*n+1)/(n+8) \\ M. F. Hasler, Nov 08 2017

Formula

a(n) ~ 2^(2*n+6) * sqrt(n/Pi). - Amiram Eldar, Sep 04 2025

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000
Edited by M. F. Hasler, Nov 08 2017

A271567 Convolution of nonzero triangular numbers (A000217) and nonzero tetradecagonal numbers (A051866).

Original entry on oeis.org

1, 17, 87, 287, 742, 1638, 3234, 5874, 9999, 16159, 25025, 37401, 54236, 76636, 105876, 143412, 190893, 250173, 323323, 412643, 520674, 650210, 804310, 986310, 1199835, 1448811, 1737477, 2070397, 2452472, 2888952, 3385448, 3947944, 4582809, 5296809, 6097119
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2016

Keywords

Comments

More generally, the ordinary generating function for the convolution of triangular numbers and k-gonal numbers is (1 + (k - 3)*x)/(1 - x)^6.

Crossrefs

Cf. similar sequences of the convolution of triangular numbers and k-gonal numbers: A005585 (k=4), A051836 (k=5), A034263 (k=6), A027800 (k=7), A051843 (k=8), A051877 (k=9), A051878 (k=10), A051879 (k=11), A051880 (k=12), A056118 (k=13), this sequence (k=14).

Programs

  • Magma
    /* From definition: */ P:=func; /*, where P(n, k) is the n-th k-gonal number, */ [&+[P(n+1-i, 3)*P(i, 14): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 18 2016
    
  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*(12*n+5)/120: n in [0..40]]; // Bruno Berselli, Apr 18 2016
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 17, 87, 287, 742, 1638}, 40]
    Table[(n + 1) (n + 2) (n + 3) (n + 4) (12 n + 5)/120, {n, 0, 40}]

Formula

O.g.f.: (1 + 11*x)/(1 - x)^6.
E.g.f.: (120 + 1920*x + 3240*x^2 + 1520*x^3 + 245*x^4 + 12*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(n + 4)*(12*n + 5)/120.
Sum_{n>=0} 1/a(n) = 20*((15552*(6*log(2) + 3*log(3) + 2*sqrt(3)*log(2 - sqrt(3)) + (2 - sqrt(3))*Pi) - 29449)/531867) = 1.07654258697...

Extensions

Edited by Bruno Berselli, Apr 18 2016

A143129 Triangle read by rows, T(n,k) = sum {j=k..n} A000292(j) = A000012 * (A000292 * 0^(n-k)) * A000012, 1<=k<=n.

Original entry on oeis.org

1, 5, 4, 15, 14, 10, 35, 34, 30, 20, 70, 69, 65, 55, 35, 126, 125, 121, 111, 91, 56, 210, 209, 205, 195, 175, 140, 84, 330, 329, 325, 315, 295, 260, 204, 120, 495, 494, 490, 480, 460, 425, 369, 285, 165, 715, 714, 710, 700, 680, 645, 589, 505, 385, 220, 1001, 1000
Offset: 1

Views

Author

Gary W. Adamson, Jul 26 2008

Keywords

Comments

Row sums = A034263: (1, 9, 39, 119, 294,...).

Examples

			First few rows of the triangle =
1;
5, 4;
15, 14, 10;
35, 34, 30, 20;
70, 69, 65, 55, 35;
126, 125, 121, 111, 91, 56;
210, 209l 205, 195, 175, 140, 84;
...
T(5,3) = 65 = (10 + 20 + 35), where A000292 = (1, 4, 10, 20, 35,...)
		

Crossrefs

Formula

Triangle read by rows, T(n,k) = sum {j=k..n} A000292(j) = A000012 * (A000292 * 0^(n-k)) * A000012, 1<=k<=n
Previous Showing 11-15 of 15 results.