cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 145 results. Next

A334274 Numbers k such that the k-th composition in standard order is both a necklace and a reversed co-necklace.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 48, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 160, 164, 168, 170, 192, 200, 204, 208, 212, 216
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2020

Keywords

Comments

Also numbers whose binary expansion is both a reversed necklace and a co-necklace.
A necklace is a finite sequence of positive integers that is lexicographically less than or equal to any cyclic rotation. Co-necklaces are defined similarly, except with greater instead of less.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of all reversed co-necklace necklaces begins:
    0: ()            31: (1,1,1,1,1)      100: (1,3,3)
    1: (1)           32: (6)              104: (1,2,4)
    2: (2)           36: (3,3)            106: (1,2,2,2)
    3: (1,1)         40: (2,4)            108: (1,2,1,3)
    4: (3)           42: (2,2,2)          112: (1,1,5)
    6: (1,2)         48: (1,5)            116: (1,1,2,3)
    7: (1,1,1)       52: (1,2,3)          118: (1,1,2,1,2)
    8: (4)           54: (1,2,1,2)        120: (1,1,1,4)
   10: (2,2)         56: (1,1,4)          122: (1,1,1,2,2)
   12: (1,3)         58: (1,1,2,2)        124: (1,1,1,1,3)
   14: (1,1,2)       60: (1,1,1,3)        126: (1,1,1,1,1,2)
   15: (1,1,1,1)     62: (1,1,1,1,2)      127: (1,1,1,1,1,1,1)
   16: (5)           63: (1,1,1,1,1,1)    128: (8)
   20: (2,3)         64: (7)              136: (4,4)
   24: (1,4)         72: (3,4)            144: (3,5)
   26: (1,2,2)       80: (2,5)            160: (2,6)
   28: (1,1,3)       84: (2,2,3)          164: (2,3,3)
   30: (1,1,1,2)     96: (1,6)            168: (2,2,4)
		

Crossrefs

The aperiodic case is A334267.
Compositions of this type are counted by A334271.
Normal sequences of this type are counted by A334272.
Binary (or reversed binary) necklaces are counted by A000031.
Necklace compositions are counted by A008965.
All of the following pertain to compositions in standard order (A066099):
- Necklaces are A065609.
- Reversed necklaces are A333943.
- Co-necklaces are A333764.
- Reversed co-necklaces are A328595.
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Reversed Lyndon words are A334265.
- Reversed co-Lyndon words are A328596.
- Aperiodic compositions are A328594.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    neckQ[q_]:=Length[q]==0||Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    coneckQ[q_]:=Length[q]==0||Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Select[Range[0,100],neckQ[stc[#]]&&coneckQ[Reverse[stc[#]]]&]

A335488 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1).

Original entry on oeis.org

3, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than once, or non-strict compositions.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
		

Crossrefs

The complement A233564 is the avoiding version.
Patterns matching this pattern are counted by A019472 (by length).
Permutations of prime indices matching this pattern are counted by A335487.
These compositions are counted by A261982 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1,1)-matching case is A335512.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_}]&]

A335508 Number of patterns of length n matching the pattern (1,1,1).

Original entry on oeis.org

0, 0, 0, 1, 9, 91, 993, 12013, 160275, 2347141, 37496163, 649660573, 12142311195, 243626199181, 5224710549243, 119294328993853, 2889836999693355, 74037381200415901, 2000383612949821323, 56850708386783835133, 1695491518035158123115, 52949018580275965241821
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 9 patterns:
  (1,1,1)  (1,1,1,1)
           (1,1,1,2)
           (1,1,2,1)
           (1,2,1,1)
           (1,2,2,2)
           (2,1,1,1)
           (2,1,2,2)
           (2,2,1,2)
           (2,2,2,1)
		

Crossrefs

The complement A080599 is the avoiding version.
Permutations of prime indices matching this pattern are counted by A335510.
Compositions matching this pattern are counted by A335455 and ranked by A335512.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matching (1,2,3) are counted by A335515.
Cf. A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> b(n$2)-b(n, 2):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,x_,_}]&]],{n,0,6}]

Formula

a(n) = Sum_{k=3..n} A276922(n,k). - Alois P. Heinz, Jan 28 2024
a(n) = A000670(n) - A080599(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9)-a(21) from Alois P. Heinz, Jan 28 2024

A335512 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1,1).

Original entry on oeis.org

7, 15, 23, 27, 29, 30, 31, 39, 42, 47, 51, 55, 57, 59, 60, 61, 62, 63, 71, 79, 85, 86, 87, 90, 91, 93, 94, 95, 99, 103, 106, 107, 109, 110, 111, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135, 143, 151, 155, 157, 158, 159, 167, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than twice.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   7: (1,1,1)
  15: (1,1,1,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
  39: (3,1,1,1)
  42: (2,2,2)
  47: (2,1,1,1,1)
  51: (1,3,1,1)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  60: (1,1,1,3)
		

Crossrefs

The complement A335513 is the avoiding version.
Patterns matching this pattern are counted by A335508 (by length).
Permutations of prime indices matching this pattern are counted by A335510.
These compositions are counted by A335455 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1)-matching version is A335488.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]

A356954 Number of multisets of multisets, each covering an initial interval, whose multiset union is of size n and has weakly decreasing multiplicities.

Original entry on oeis.org

1, 1, 3, 6, 15, 30, 71, 145, 325, 680
Offset: 0

Views

Author

Gus Wiseman, Sep 09 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 15 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
         {{1},{1}}  {{1,2,3}}      {{1,1,2,2}}
                    {{1},{1,1}}    {{1,1,2,3}}
                    {{1},{1,2}}    {{1,2,3,4}}
                    {{1},{1},{1}}  {{1},{1,1,1}}
                                   {{1,1},{1,1}}
                                   {{1},{1,1,2}}
                                   {{1,1},{1,2}}
                                   {{1},{1,2,2}}
                                   {{1},{1,2,3}}
                                   {{1,2},{1,2}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{1,2}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

For unrestricted multiplicities we have A034691.
A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Other conditions: A035310, A063834, A330783, A356934, A356938, A356943.
Other types: A055932, A089259, A356945, A356955.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],And@@normQ/@#&]],{n,0,5}]

A382458 Number of normal multisets of size n that can be partitioned into a set of sets in exactly one way.

Original entry on oeis.org

1, 1, 0, 2, 1, 3, 0, 7, 3, 11, 18, 9
Offset: 0

Views

Author

Gus Wiseman, Mar 30 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset {1,2,2,2,2,3,3,4} has three multiset partitions into a set of sets:
  {{2},{1,2},{2,3},{2,3,4}}
  {{2},{2,3},{2,4},{1,2,3}}
  {{2},{3},{1,2},{2,3},{2,4}}
so is not counted under a(8).
The a(1) = 1 through a(7) = 7 normal multisets:
  {1}  .  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}  .  {1,1,1,1,2,3,4}
          {1,2,2}             {1,2,2,2,3}     {1,1,1,2,2,2,3}
                              {1,2,3,3,3}     {1,1,1,2,3,3,3}
                                              {1,2,2,2,2,3,4}
                                              {1,2,2,2,3,3,3}
                                              {1,2,3,3,3,3,4}
                                              {1,2,3,4,4,4,4}
		

Crossrefs

For constant instead of strict blocks we have A000045.
Factorizations of this type are counted by A050326, with distinct sums A381633.
For the strong case see A292444, A382430, complement A381996, A382523.
MM-numbers of sets of sets are A302494, see A302478, A382201.
Twice-partitions into distinct sets are counted by A358914, with distinct sums A279785.
For integer partitions we have A382079 (A293511), with distinct sums A382460, (A381870).
With distinct sums we have A382459.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360.
Normal multiset partitions: A034691, A035310, A116539, A255906, A381718.
Set systems: A050342, A296120, A318361.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@ Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]& /@ sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n], Length[Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]]==1&]], {n,0,5}]

A382459 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums in exactly one way.

Original entry on oeis.org

1, 1, 0, 2, 1, 3, 2, 7, 4, 10, 19
Offset: 0

Views

Author

Gus Wiseman, Apr 01 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset {1,2,2,2,2,3,3,4} has only one multiset partition into a set of sets with distinct sums: {{2},{1,2},{2,3},{2,3,4}}, so is counted under a(8).
The a(1) = 1 through a(7) = 7 multisets:
  {1}  .  {112}  {1122}  {11123}  {111233}  {1111234}
          {122}          {12223}  {122233}  {1112223}
                         {12333}            {1112333}
                                            {1222234}
                                            {1222333}
                                            {1233334}
                                            {1234444}
		

Crossrefs

Twice-partitions of this type are counted by A279785, A270995, A358914.
Factorizations of this type are counted by A381633, A050320, A050326.
Normal multiset partitions of this type are A381718, A116540, A116539.
Multiset partitions of this type are ranked by A382201, A302478, A302494.
For at least one choice: A382216 (strict A382214), complement A382202 (strict A292432).
For the strong case see: A382430 (strict A292444), complement A382523 (strict A381996).
Without distinct sums we have A382458.
For integer partitions we have A382460, ranks A381870, strict A382079, ranks A293511.
Set multipartitions: A089259, A296119, A318360.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Length[Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]]==1&]],{n,0,5}]

A143463 Number of multiple hierarchies for n labeled elements.

Original entry on oeis.org

1, 4, 20, 133, 1047, 9754, 103203, 1229330, 16198452, 234110702, 3675679471, 62287376870, 1132138152251, 21963847972941, 452786198062541, 9881445268293457, 227522503290656371, 5510876754647261442, 140040543831299600637, 3724688873146823853387
Offset: 1

Views

Author

Thomas Wieder, Aug 17 2008

Keywords

Comments

The n labeled elements 1,2,3,...,n can be distributed in A005651(n) ways onto the levels of a single hierarchy. For the present sequence we distributed the n elements onto 1 up to n separate hierarchies. a(n) gives the number of such separate hierarchies for given n.
A hierarchy is a distribution of elements onto levels. Within a hierarchy the occupation number of level l_j is <= the occupation numbers of the levels l_i with i < j. Let the colon ":" separate two levels l_i and l_(j=i+1). Then we may have 1,2,3:4,5, but 1,2:3,4,5 is forbidden since the higher level has a greater occupation number. On the other hand, for a hierarchical ordering the second configuration is allowed.
The present sequence is the Exp transform of A005651.
The present sequence is related to A075729 which gives the number of separated hierarchical orderings. A034691 gives the number of separated hierarchical orderings for unlabeled elements. Thus we have
Hierarchies on elements:
........ unlabeled labeled
multiple A001970 A143463
Hierarchical orderings on elements:
........ unlabeled labeled
multiple A034691 A075729

Examples

			Let "|" separate two hierarchies. Then we have
n=1 gives 1 arrangement:
1
n=2 gives 4 arrangements:
1,2 1:2 2:1 1|2
n=3 gives 20 arrangements:
1,2,3 1,2:3 1:2:3 1,2|3 1:2|3 1|2|3
1,3:2 3:1:2 1,3|2 1:3|2
2,3:1 2:3:1 2,3|1 2:3|1
1:3:2 2:1|3
2:1:3 3:1|2
3:2:1 3:2|1
		

Crossrefs

There is a similar formula for A075729. - Thomas Wieder, Sep 09 2008

Programs

  • Maple
    A143463:=proc(n::integer)
    # Begonnen am: 14.08.2008
    # Letzte Aenderung: 14.08.2008
    # Subroutines required: ListeMengenzerlegungenAuf, A005651.
    local iverbose, Liste, Zerlegungen, Zerlegung, Produkt, Summe, Untermenge, ZahlElemente;
    iverbose:=0;
    Liste:=[seq( i, i=1..n )];
    Zerlegungen:=ListeMengenzerlegungenAuf(Liste);
    Summe:=0;
    if iverbose=1 then
    print("Zerlegungen: ",Zerlegungen);
    end if;
    for Zerlegung in Zerlegungen do
    Produkt:=1;
    if iverbose=1 then
    print("Zerlegung: ",Zerlegung);
    end if;
    # Eine Zerlegung besteht aus Untermengen.
    for Untermenge in Zerlegung do
    ZahlElemente:=nops(Untermenge);
    Produkt:=Produkt*A005651(ZahlElemente);
    if iverbose=1 then
    print("Untermenge: ",Untermenge,"A005651(ZahlElemente)",A005651(ZahlElemente));
    end if;
    # Ende der Schleife in der Zerlegung.
    od;
    Summe:=Summe+Produkt;
    # Ende der Schleife ueber die Zerlegungen.
    od;
    print("Resultat:",Summe);
    end proc;
    A143463 := proc(n::integer) local k,A005651,Resultat; A005651:=array(1..20): A005651[1]:=1: A005651[2]:=3: A005651[3]:=10: A005651[4]:=47: A005651[5]:=246: A005651[6]:=1602: A005651[7]:=11481: A005651[8]:=95503: A005651[9]:=871030: A005651[10]:=8879558: A005651[11]:=98329551: A005651[12]:=1191578522: A005651[13]:=15543026747: A005651[14]:=218668538441: A005651[15]:=3285749117475: A005651[16]:=52700813279423: A005651[17]:=896697825211142: A005651[18]:=16160442591627990: A005651[19]:=307183340680888755: A005651[20]:=6147451460222703502: if n = 0 then Resultat:=1: RETURN(Resultat); end if; Resultat:=0: for k from 1 to n do Resultat:=Resultat+(A143463(n-k)*A005651[k])/((n-k)!*(k-1)!): od; Resultat:=Resultat*(n-1)!; RETURN(Resultat); end proc; [From Thomas Wieder, Sep 09 2008]
    # second Maple program:
    with(numtheory):
    b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end:
    c:= proc(n) option remember; `if`(n=0, 1,
          add((n-1)!/ (n-k)!* b(k) * c(n-k), k=1..n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
           c(n) +add(binomial(n-1, k-1) *c(k) *a(n-k), k=1..n-1))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Oct 10 2008
  • Mathematica
    nmax=20; Rest[CoefficientList[Series[Exp[Product[1/(1-x^k/k!),{k,1,nmax}]-1],{x,0,nmax}],x] * Range[0,nmax]!] (* Vaclav Kotesovec, May 11 2015 *)

Formula

Consider the set partitions of the n-set {1,2,...,n}. As usual, Bell(n) denotes the Bell numbers. The i-th set partition SP(i)={U(1),...,U(Z(i))} consists of Z(i) subsets U(j) with j=1,2,...,Z(i). |U(j)| is the number of elements in U(j). Then a(n) = Sum_{i=1..Bell(n)} Product_{j=1..Z(i)} A005651(|U(j)|). E.g.f.: series((1/exp(1))*exp(mul(1/(1-x^k/k!), k=1..12)), x=0,12);
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k) A005651(k))/((n-k)! (k-1)!). - Thomas Wieder, Sep 09 2008
a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A005651(k)*a(n-k) and a(0)=1. - Thomas Wieder, Sep 12 2008

Extensions

Partially edited by N. J. A. Sloane, Aug 24 2008
More terms from Alois P. Heinz, Oct 10 2008

A260787 G.f.: Product_{k>=1} 1/(1-x^k)^Fibonacci(k+2).

Original entry on oeis.org

1, 2, 6, 15, 38, 89, 210, 474, 1065, 2339, 5091, 10919, 23230, 48887, 102126, 211599, 435561, 890617, 1810786, 3661118, 7365473, 14747049, 29397160, 58356179, 115392801, 227332038, 446304671, 873298579, 1703463864, 3312873935, 6424553973, 12425158365, 23968214357, 46120280910, 88535346223
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Comments

In general, the sequence with g.f. Product_{k>=1} 1/(1-x^k)^Fibonacci(k+z), where z is nonnegative integer, is asymptotic to phi^(n + z/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp((phi/10 - 1/2) * Fibonacci(z) - Fibonacci(z+1)/10 + 2 * 5^(-1/4) * phi^(z/2) * sqrt(n) + s), where s = Sum_{k>=2} (Fibonacci(z) + Fibonacci(z+1) * phi^k) / ((phi^(2*k) - phi^k - 1)*k) and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k+2], {k, 1, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 05 2015 *)

Formula

a(n) ~ phi^(n+1/2) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 7/10 + 2*5^(-1/4)*phi*sqrt(n) + s), where s = Sum_{k>=2} (1 + 2*phi^k) / ((phi^(2*k) - phi^k - 1)*k) = 1.39069800276768443926918973402733105305129194986259856042723... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

A299023 Number of compositions of n whose standard factorization into Lyndon words has all strict compositions as factors.

Original entry on oeis.org

1, 2, 4, 7, 12, 23, 38, 66, 112, 193, 319, 539, 887, 1466, 2415, 3951, 6417, 10428, 16817, 27072, 43505, 69560, 110916, 176469, 279893, 442742, 698919, 1100898, 1729530, 2712134, 4244263, 6628174, 10332499, 16077835, 24972415, 38729239, 59958797, 92685287
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2018

Keywords

Examples

			The a(5) = 12 compositions:
      (5) = (5)
     (41) = (4)*(1)
     (14) = (14)
     (32) = (3)*(2)
     (23) = (23)
    (311) = (3)*(1)*(1)
    (131) = (13)*(1)
    (221) = (2)*(2)*(1)
    (212) = (2)*(12)
   (2111) = (2)*(1)*(1)*(1)
   (1211) = (12)*(1)*(1)
  (11111) = (1)*(1)*(1)*(1)*(1)
Not included:
    (113) = (113)
    (122) = (122)
   (1121) = (112)*(1)
   (1112) = (1112)
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=Product[1/(1-x^n)^Total[(Length[#]-1)!&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(N)={EulerT(Vec(sum(n=1, N-1, (n-1)!*x^(n*(n+1)/2)/prod(k=1, n, 1-x^k + O(x^N)))))} \\ Andrew Howroyd, Dec 01 2018

Formula

Euler transform of A032153.
Previous Showing 101-110 of 145 results. Next