cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A220673 Coefficients of formal series in powers of (tan(x))^2 for tan(5*x)/tan(x).

Original entry on oeis.org

5, 40, 376, 3560, 33720, 319400, 3025400, 28657000, 271443000, 2571145000, 24354235000, 230686625000, 2185095075000, 20697517625000, 196049700875000, 1857009420625000, 17589845701875000, 166613409915625000, 1578184870646875000
Offset: 0

Views

Author

Wolfdieter Lang, Jan 16 2013

Keywords

Comments

Formally Sum_{n>=0} a(n)*(tan(x))^(2*n) = tan(5*x)/ tan(x).
Convergence holds for x from the two open intervals (1-sqrt(6/5), 1-2/sqrt(5)) and (1+2/sqrt(5), 1+sqrt(6/5)), namely (-0.095445115, 0.105572809) and (1.894427191, 2.095445115) (10 digits).
These intervals follow from the denominator of the o.g.f. G(5,x) = (5 - 10*x + x^2)/(1 - 10*x + 5*x^2).
If one replaces x by (tan(x))^2 in this o.g.f. one obtains the formula for tan(5*x)/tan(x) in terms of (tan(x))^2. This formula is the special (n=5) solution of a general recurrence derivable from the addition theorem for tan(n*x) = tan(x + (n-1)*x), namely, with Q(n,x) := tan(n,x)/tan(x), Q(n,x) = (1 + Q(n-1,x))/(1 - v*Q(n-1,x)), where v = v(x) =(tan(x))^2, and the input is Q(1,x) = 1. Read as function of v the solution for Q(5,x) is just G(5,v) with replaced v=v(x).
See the irregular triangles A034867 and A034839 whose row polynomials N(n,x) and D(n,x), respectively, give for n >= 1 the solution to the recurrences N(n,x) = D(n-1,x) + N(n-1,x), D(n,x) = D(n-1,x) + x*N(n-1,x), with inputs N(1,x) = 1 and D(1,x) = 1. The proof by the Pascal triangle A007318 recurrence is trivial. Therefore, Q(n,x) from the preceding comment is given by Q(n,x) = N(n,-v)/D(n,-v) with v=v(x) = (tan(x))^2.
One also has, with Chebyshev's S polynomials (see A049310) Q(n,x) = tan(n*x)/tan(x) = (S(n,y) + S(n-2,y))/(S(n,y) - S(n-2,y)) = y*S(n-1,y)/(S(n,y) - S(n-2,y)) = 1/(1 - (2/y)*S(n-2,y)/S(n-1,y)), where y = y(x) = 2/sqrt(1 + (tan(x))^2). This derives from sin(n*x)/cos(n*x) in terms of Chebyshev S polynomials with argument 2*cos(x) = y(x). Note that S(n-2,y)/S(n-1,y) has the continued fraction representation 1/(y-1/(y- ... -1/(y )..(n-1)brackets..), i.e. (n-1) y's.
These calculations have been motivated by e-mails from Thomas Olsen.

Examples

			Q(5,x=0.1) = tan(0.5)/tan(0.1) = 5.444802663 (Maple 10 digits);
G(5,tan(0.1)^2) = 5.444802664;
Sum_{n>=0} a(n)*(tan(0.1))^(2*n) = 5.444802664.
		

Crossrefs

Cf. 2*A000012 (case n=2), A080923(n+1), n>=0 (case n=3), A077445(n+1), n>=0 (case n=4), A034867, A034839.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((5-10*x+x^2)/(1-10*x+5*x^2))); // G. C. Greubel, Mar 06 2018
  • Mathematica
    CoefficientList[Series[(5-10*x+x^2)/(1-10*x+5*x^2), {x,0,50}], x] (* G. C. Greubel, Mar 06 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((5-10*x+x^2)/(1-10*x+5*x^2)) \\ G. C. Greubel, Mar 06 2018
    

Formula

O.g.f.: G(5,x) = (5 - 10*x + x^2)/(1 - 10*x + 5*x^2).
a(n) = delta(n,0)/5 - 8*b(n) + 24*b(n+1)/5, n>=0, with Kronecker's delta and b(n):= A190987(n).
E.g.f.: (1 + 8*exp(5*x)*(3*cosh(2*sqrt(5)*x) + sqrt(5)*sinh(2*sqrt(5)*x)))/5. - Stefano Spezia, May 23 2025

A135685 Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).

Original entry on oeis.org

0, 0, 1, 0, -2, 0, -3, 0, 1, 0, 4, 0, -4, 0, 5, 0, -10, 0, 1, 0, -6, 0, 20, 0, -6, 0, -7, 0, 35, 0, -21, 0, 1, 0, 8, 0, -56, 0, 56, 0, -8, 0, 9, 0, -84, 0, 126, 0, -36, 0, 1, 0, -10, 0, 120, 0, -252, 0, 120, 0, -10, 0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 17 2008

Keywords

Comments

Signed version of A034867 with interlaced zeros. - Joerg Arndt, Sep 14 2014
The negatives of these terms gives the coefficients for the numerators for when n is negative (i.e. tan(-n*y) = -tan(n*y)). - James Burling, Sep 14 2014

Examples

			Triangle starts:
  0;
  0,   1;
  0,  -2;
  0,  -3,  0,   1;
  0,   4,  0,  -4;
  0,   5,  0, -10,  0,    1;
  0,  -6,  0,  20,  0,   -6;
  0,  -7,  0,  35,  0,  -21,  0,   1;
  0,   8,  0, -56,  0,   56,  0,  -8;
  0,   9,  0, -84,  0,  126,  0, -36,  0,   1;
  0, -10,  0, 120,  0, -252,  0, 120,  0, -10;
  0, -11,  0, 165,  0, -462,  0, 330,  0, -55,  0,  1;
		

Crossrefs

Programs

  • Maple
    g[0]:= 0:
    g[1]:= x;
    for n from 2 to 20 do
    g[n]:= expand(-2*(-1)^n*g[n-1]+(x^2+1)*g[n-2])
    od:
    0, seq(seq(coeff(g[n],x,j),j=0..degree(g[n])),n=1..20); # Robert Israel, Sep 14 2014
  • Mathematica
    p[n_, x_]:= p[n, x]= If[n<2, n*x, (p[n-1, x] + x)/(1 - x*p[n-1, x])];
    Table[CoefficientList[Numerator[FullSimplify[p[n, x]]], x], {n,0,12}]//Flatten
  • Sage
    def p(n, x): return n*x if (n<2) else 2*(-1)^(n+1)*p(n-1,x) + (1+x^2)*p(n-2,x)
    def A135685(n,k): return ( p(n,x) ).series(x,n+1).list()[k]
    flatten([[A135685(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 26 2021

Formula

p(n, x) = (p(n-1, x) + x)/(1 - x*p(n-1, x)), with p(0, x) = 0, p(1, x) = x.
Sum_{j} T(n,j)*x^j = g(n,x) where g(0,x) = 0, g(1,x) = x, g(n,x) = -2*(-1)^n*g(n-1,x) + (x^2+1)*g(n-2,x). - Robert Israel, Sep 14 2014

Extensions

Prepended first term and offset corrected by James Burling, Sep 14 2014

A235803 Rectangular array read by upward antidiagonals: A(n,k) = 1 + sqrt(k)*((1+sqrt(k))^n - (1-sqrt(k))^n)/2, n,k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 9, 11, 7, 5, 1, 1, 17, 25, 19, 9, 6, 1, 1, 33, 59, 49, 29, 11, 7, 1, 1, 65, 141, 133, 81, 41, 13, 8, 1, 1, 129, 339, 361, 245, 121, 55, 15, 9, 1, 1, 257, 817, 985, 729, 401, 169, 71, 17, 10, 1
Offset: 0

Views

Author

L. Edson Jeffery, Jan 15 2014

Keywords

Examples

			Array begins:
1,   1,    1,    1,     1,     1,     1,      1,      1,      1, ...
1,   2,    3,    4,     5,     6,     7,      8,      9,     10, ...
1,   3,    5,    7,     9,    11,    13,     15,     17,     19, ...
1,   5,   11,   19,    29,    41,    55,     71,     89,    109, ...
1,   9,   25,   49,    81,   121,   169,    225,    289,    361, ...
1,  17,   59,  133,   245,   401,   607,    869,   1193,   1585, ...
1,  33,  141,  361,   729,  1281,  2053,   3081,   4401,   6049, ...
1,  65,  339,  985,  2189,  4161,  7135,  11369,  17145,  24769, ...
1, 129,  817, 2689,  6561, 13441, 24529,  41217,  65089,  97921, ...
1, 257, 1971, 7345, 19685, 43521, 84727, 150641, 250185, 393985, ...
As a triangle:
1;
1,  1;
1,  2,  1;
1,  3,  3,  1;
1,  5,  5,  4,  1;
1,  9, 11,  7,  5,  1;
1, 17, 25, 19,  9,  6, 1;
1, 33, 59, 49, 29, 11, 7, 1; ...
		

Crossrefs

Cf. A094373 (column k=1)

Formula

A(0,k) = 1, A(n,k) = 1 + k*(sum_{j=0..floor((n-1)/2)} A034867(n,j)*k^j), n>0.
Previous Showing 21-24 of 24 results.