cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A265848 Pascal's triangle, right and left halves interchanged.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 1, 3, 4, 1, 1, 4, 6, 10, 5, 1, 1, 5, 10, 15, 6, 1, 1, 6, 15, 20, 35, 21, 7, 1, 1, 7, 21, 35, 56, 28, 8, 1, 1, 8, 28, 56, 70, 126, 84, 36, 9, 1, 1, 9, 36, 84, 126, 210, 120, 45, 10, 1, 1, 10, 45, 120, 210, 252, 462, 330, 165, 55, 11, 1, 1, 11, 55, 165, 330, 462
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 24 2015

Keywords

Comments

Concatenations of rows of A014413 and A034868.
Alternative mirrored variant: concatenation of A034869 and A014462.

Examples

			.   0:                                1
.   1:                              1   1
.   2:                            1   1   2
.   3:                          3   1   1   3
.   4:                        4   1   1   4   6
.   5:                     10   5   1   1   5   10
.   6:                   15   6   1   1   6   15  20
.   7:                 35   21  7   1   1   7   21   35
.   8:              56   28   8   1   1   8   28  56   70
.   9:           126   84   36  9   1   1   9   36   84   126
.  10:        210   120  45  10   1   1   10  45  120  210  252
.  11:     462   330  165   55  11  1   1   11  55  165   330  462
.  12:  792   495  220   66  12   1   1   12  66  220  495  792   924  .
		

Crossrefs

Cf. A014413, A014462, A034868, A034869, A007318, A001405, A037952, A000079 (row sums), A001142 (row products).

Programs

  • Haskell
    a265848 n k = a265848_tabl !! n !! k
    a265848_row n = a265848_tabl !! n
    a265848_tabl = zipWith (++) ([] : a014413_tabf) a034868_tabf
  • Mathematica
    row[n_] := Binomial[n, Join[Range[Floor[n/2] + 1, n], Range[0, Floor[n/2]]]]; Array[row, 12, 0] // Flatten (* Amiram Eldar, May 13 2025 *)

Formula

T(n,k) = A007318(n, (k + floor((n+2)/2)) mod (n+1)).
T(n,k) = if k <= [(n+1)/2] then A014413(n,k+1) else A034868(n,k-[(n+1)/2]).
T(n,0) = A037952(n) for n > 0.
T(n,n) = A001405(n).

A133179 A modular binomial sum transform of 2^n .

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 5, 15, 1, 3, 5, 15, 17, 51, 85, 255, 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535
Offset: 0

Views

Author

Philippe Deléham, Oct 10 2007

Keywords

Examples

			A034868 is:
1;
1;
1, 2;
1, 3;
1, 4, 6;
1, 5, 10 ;...
A034868 modulo 2:
1;
1;
1, 0;
1, 1;
1, 0, 0;
1, 1, 0 ;...
a(0)=1*2^0 = 1;
a(1)=1*2^0 = 1;
a(2)=1*2^0+0*2^1 = 1;
a(3)=1*2^0+1*2^1 = 3;
a(4)=1*2^0+0*2^1+0*2^2 = 1
a(5)=1*2^0+1*2^1+0*2^2 = 3
		

Crossrefs

Programs

  • Mathematica
    A133179[n_] := Sum[2^k*Mod[Binomial[n, k], 2], {k, 0, Floor[n/2]}]; Table[A133179[n], {n,0,50}] (* G. C. Greubel, Aug 11 2017 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} mod(binomial(n,k),2) * 2^k.

A258193 Define a<+>b = odd part(odd part(a) + odd part(b)), where odd part(n) = A000265(n); a(n) is the smallest prime of the form <+>_{0<=i<=k} binomial (n,i), or a(n)=0 if there is no such a prime (see comment).

Original entry on oeis.org

0, 0, 0, 0, 3, 3, 11, 0, 5, 3, 3, 17, 7, 23, 53, 29, 13, 5, 5, 3, 11, 3, 3, 823, 13, 7, 7, 457, 109, 109, 233, 2267, 17, 59, 151, 5, 19, 5, 5, 3, 113, 11, 11, 3, 23, 3, 3, 71, 43, 13, 13, 7, 179, 7, 7, 193, 29, 2137, 863, 443, 31, 5498157739, 977, 163
Offset: 1

Views

Author

Vladimir Shevelev, May 23 2015

Keywords

Comments

f(n)=<+>_{0<=i<=n} c(i) is defined as the following: f(0)=c(0), f(n)=f(n-1)<+>c(n).
a(n)=0 for 1,2,3,4,8,82,107,...(cf. A258194)

Crossrefs

Programs

  • Haskell
    import Data.Function (on)
    a258193 n = head $ (filter ((== 1) . a010051'') $
                        scanl1 (<+>) (a034868_row n)) ++ [0]
                where (<+>) = (a000265 .) . on (+) a000265
    -- Reinhard Zumkeller, Jun 20 2015
  • Mathematica
    vSum[a_,b_]:=#[#[a]+#[b]]&[#/2^IntegerExponent[#,2]&];
    Table[
    First[Select[FoldList[vSum,First[#],Rest[#]]&[Map[Binomial[n,#]&,Range[0,n]]],PrimeQ]/.{}->{0}],{n,100}] (*Peter J. C. Moses, May 23 2015*)

Extensions

More terms from Peter J. C. Moses, May 23 2015

A225860 Number of partitions of 2^n into binomial coefficients C(n,k).

Original entry on oeis.org

1, 1, 3, 3, 10, 16, 55, 133, 599, 1956, 11982, 57872, 477289, 3290993, 37671322, 373566217, 5986589127, 85738839408, 1931359427404, 40003346563574, 1274368885871702, 38222180804346119, 1729302096638372691, 75195441157176495562, 4848355840082055530710
Offset: 0

Views

Author

Reinhard Zumkeller, May 26 2013

Keywords

Examples

			n=3: C(3,0)=C(3,3) = 1, C(3,1)=C(3,2) = 3, 2^3 = 8:
a(3) = #{3+3+1+1, 3+1+1+1+1+1, 8x1} = 3;
n=4: C(4,0)=C(4,4) = 1, C(4,1)=C(4,3) = 4, C(4,2) = 6, 2^4 = 16:
a(4) = #{6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+6x1, 6+10x1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+8x1, 4+12x1, 16x1} = 10
n=5: C(5,0)=C(5,5) = 1, C(5,1)=C(5,4) = 5, C(5,2)=C(5,3) = 10, 2^5 = 32:
a(5) = #{10+10+10+1+1, 10+10+5+5+1+1, 10+10+5+7x1, 10+10+12x1, 10+5+5+5+5+1+1, 10+5+5+5+7x1, 10+5+5+12x1, 10+5+17x1, 10+22x1, 6x5, 5x5+7x1, 5+5+5+5+12x1, 5+5+5+17x1, 5+5+22x1, 5+27x1, 32x1} = 16.
		

Crossrefs

Programs

  • Haskell
    a225860 n = p (a034868_row n) (2 ^ n) where
       p _          0 = 1
       p []         _ = 0
       p bs'@(b:bs) m = if m < b then 0 else p bs' (m - b) + p bs m
  • Maple
    a:= proc(n) option remember; local g, i, j, l, m, t;
          m:= 1+iquo(n, 2);
          l:= array(1..m, [seq(binomial(n,k), k=0..m-1)]);
          g:= array(1..m, [seq(array(0..l[i]-1, [0$(l[i])]), i=1..m)]);
          g[1][0]:= 1;
          for j from 0 to 2^n do for i from 2 to m do
            g[i][irem(j, l[i])]:= g[i][irem(j, l[i])]
                                 +g[i-1][irem(j, l[i-1])]
          od od; g[m][irem(2^n, l[m])]
        end:
    seq(a(n), n=0..14);  # Alois P. Heinz, May 30 2013

Extensions

a(13)-a(23) from Alois P. Heinz, May 30 2013
a(24) from Alois P. Heinz, Oct 06 2014

A273098 Discriminator of first half of row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 4, 8, 13, 11, 13, 8, 17, 20, 12, 16, 23, 19, 35, 28, 41, 23, 41, 20, 37, 53, 47, 29, 61, 31, 76, 32, 63, 67, 61, 37, 101, 73, 131, 41, 101, 43, 67, 108, 83, 47, 119, 70, 137, 61, 118, 53, 127, 113, 137, 128, 167, 59, 179, 61, 173, 202, 206, 64, 239, 67, 334, 278, 213, 71, 179, 73, 185, 386, 269, 218, 277, 79, 197, 283
Offset: 0

Views

Author

Jeffrey Shallit, May 15 2016

Keywords

Comments

The discriminator of a finite sequence is the least positive integer k such that all of its terms are pairwise incongruent, modulo k. Here the n-th term of the sequence is the discriminator of binomial(n, 0), binomial(n,1), ..., binomial(n,t) where t = floor(n/2).
It appears that a(2^k-1) = 2^k for k >= 3. - Robert Israel, May 15 2016

Crossrefs

Programs

  • Maple
    discriminator:= proc(L)
      local n,k;
      n:= nops(L);
      for k from n do if nops (L mod k) =n  then return k fi od:
    end proc;
    seq(discriminator({seq(binomial(n,j),j=0..floor(n/2))}),n=0..100); # Robert Israel, May 15 2016
Previous Showing 11-15 of 15 results.