cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A056761 Odd numbers less than the cube of their number of divisors.

Original entry on oeis.org

3, 5, 7, 9, 15, 21, 25, 27, 33, 35, 39, 45, 51, 55, 57, 63, 75, 81, 99, 105, 117, 135, 147, 153, 165, 171, 175, 189, 195, 207, 225, 231, 255, 273, 285, 297, 315, 345, 351, 357, 375, 385, 399, 405, 429, 435, 441, 455, 459, 465, 483, 495, 525, 567, 585, 675, 693
Offset: 1

Views

Author

Labos Elemer, Aug 16 2000

Keywords

Comments

Last term is a(267) = 883575, confirming the author's conjecture. - Charles R Greathouse IV, Apr 27 2011

Examples

			14175 = 81*25*7 has 30 divisors, and 30^3 = 27000 > 14175.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6 + 1, 2], DivisorSigma[0, #]^3 > # &] (* Michael De Vlieger, Oct 26 2017 *)
  • PARI
    isok(n) = (n % 2) && (numdiv(n)^3 > n); \\ Michel Marcus, Dec 19 2013

A067023 Sigma-crowded numbers: n such that d(n)/sigma(n) is larger than d(m)/sigma(m) for all m > n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 42, 48, 60, 72, 80, 84, 90, 96, 120, 126, 144, 168, 180, 210, 240, 252, 280, 288, 300, 360, 420, 432, 480, 504, 540, 560, 600, 630, 720, 840, 900, 1008, 1080, 1260
Offset: 1

Views

Author

Labos Elemer, Jan 09 2002

Keywords

Comments

Since d(m) < 2*sqrt(m) < 2*sigma(m), we need only test values of m < (2*sigma(n)/d(n))^2.

Crossrefs

Programs

  • Mathematica
    crowded[n_] := Module[{}, stop=(2/(dovern=DivisorSigma[0, n]/DivisorSigma[1, n]))^2; For[m=n+1, m=dovern, Return[False]]]; True]; Select[Range[1, 13000], crowded]

A225730 Numbers k such that k < d(k)^(22/10), where d(k) is the number of divisors of k.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 168, 180, 192, 198, 200, 204, 210, 216, 220, 224, 228, 234
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write k^5 < d(k)^11. The last odd number is a(23) = 45.

Crossrefs

Cf. A000005, A034884 (k < d(k)^2), A175495 (k < 2^d(k)), A056757 (k < d(k)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(22/10), AppendTo[t, n]], {n, 10^5}]; t
    Select[Range[250],#Harvey P. Dale, Apr 10 2024 *)
  • PARI
    for (k=2, 20000, if (k^5 < numdiv(k)^11, print1(k,", "))) \\ Hugo Pfoertner, Apr 25 2023

A056758 Numbers n for which d(n)^3 < n.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 125, 127, 129, 131, 133, 134, 137, 139, 141, 142, 143, 145, 146
Offset: 1

Views

Author

Labos Elemer, Aug 16 2000

Keywords

Comments

The complementary set (d^3 > n) is finite, albeit with very large terms. See also d(n)^2 < n, A035035.
The last number not in this sequence is 27935107200. - Charles R Greathouse IV, Feb 27 2017

Examples

			n=254, d(n)=4, d^3 = 64 < 254 so 254 is in the sequence.
		

Crossrefs

Programs

Formula

d(n)^3 = A000005(n)^3 < n.

Extensions

Erroneous linear recurrence signature link deleted by Harvey P. Dale, Jun 25 2021

A056760 Integers with exactly 2 prime divisors such that the cube of the number of divisors exceeds the number.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172
Offset: 1

Views

Author

Labos Elemer, Aug 16 2000

Keywords

Comments

Numbers with 8 prime divisors also occur among cases satisfying relation d^3>n.
Prime divisors are counted without multiplicity. - Harvey P. Dale, May 14 2012

Examples

			The sequence is finite and almost surely complete. Between 270000 and 17000000 no more cases were found. The last 3 entries are: 165888, 186624, 248832. E.g. k = 1024*343 = 248832, with 66 divisors and d^3 = 287496 > 248832.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[180],PrimeNu[#]==2&&DivisorSigma[0,#]^3>#&] (* Harvey P. Dale, May 14 2012 *)

Formula

Integers k = (p^w)*(q^u) such that d(k)^3 > k, where d(k) = A000005(k).

A146567 Numbers n such that n*sigma_0(n)/(n+sigma_0(n)) = c, c an integer.

Original entry on oeis.org

2, 12, 24, 56, 60, 132, 1260
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 01 2008

Keywords

Comments

A000027(n)*A000005(n)/(A000027(n)+A000005(n))=c, c an integer.
No other term < 5000000. - Emeric Deutsch, Nov 09 2008
No other term < 10000000. - Michel Marcus, Jun 02 2013
For a given n let x be the minimal natural number such that n*x/(n+x)=c. I conjecture: from a certain n onward, x>sigma_0(n) for all n. Thus, there is no other solution bigger than 1260, and this sequence is finite. - Ctibor O. Zizka, Sep 13 2015
This sequence is complete. The finiteness proof is analogous to that of A152491, after observing that sigma_0(n)^2 < n for n > 1260 (see A034884). - Giovanni Resta, Sep 13 2015

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc (n) if type(n*tau(n)/(n+tau(n)), integer) = true then n else end if end proc: seq(a(n),n=1..200000); # Emeric Deutsch, Nov 09 2008

Extensions

Corrected and extended (one term) by Emeric Deutsch, Nov 09 2008

A175494 a(n) = floor(n^(1/d(n))), where d(n) = number of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 4, 1, 2, 2, 4, 1, 2, 2, 2, 1, 5, 1, 5, 1, 2, 2, 2, 1, 6, 2, 2, 1, 6, 1, 6, 1, 1, 2, 6, 1, 3, 1, 2, 1, 7, 1, 2, 1, 2, 2, 7, 1, 7, 2, 1, 1, 2, 1, 8, 2, 2, 1, 8, 1, 8, 2, 2, 2, 2, 1, 8, 1, 2, 3, 9, 1, 3, 3, 3
Offset: 1

Views

Author

Leroy Quet, May 30 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^(1/DivisorSigma[0, n])], {n, 100}] (* T. D. Noe, May 14 2013 *)

Extensions

More terms from R. J. Mathar, May 31 2010

A225737 Numbers n such that n < d(n)^(29/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^10 < d(n)^29. The last odd term is a(6362) = 225225.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(29/10), AppendTo[t, n]], {n, 10^7}]; t

A225731 Numbers n such that n < d(n)^(23/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^10 < d(n)^23. The last odd number is a(44) = 105.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(23/10), AppendTo[t, n]], {n, 10^5}]; t

A225732 Numbers n such that n < d(n)^(24/10), where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138, 140
Offset: 1

Views

Author

T. D. Noe, May 14 2013

Keywords

Comments

Alternatively, we could write n^5 < d(n)^12. The last odd number is a(95) = 315.

Crossrefs

Cf. A034884 (n < d(n)^2), A175495 (n < 2^d(n)), A056757 (n < d(n)^3).

Programs

  • Mathematica
    t = {}; Do[If[n < DivisorSigma[0, n]^(24/10), AppendTo[t, n]], {n, 10^6}]; t
Previous Showing 11-20 of 32 results. Next