cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 87 results. Next

A358976 Numbers that are coprime to the sum of their factorial base digits (A034968).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 28, 29, 31, 32, 33, 37, 39, 41, 43, 44, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 76, 77, 79, 83, 84, 85, 87, 88, 89, 92, 93, 95, 97, 98, 101, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2022

Keywords

Comments

Numbers k such that gcd(k, A034968(k)) = 1.
The factorial numbers (A000142) are terms. These are also the only factorial base Niven numbers (A118363) in this sequence.
Includes all the prime numbers.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 7, 59, 601, 6064, 60729, 607567, 6083420, 60827602, 607643918, 6079478119, ... . Conjecture: The asymptotic density of this sequence exists and equals 6/Pi^2 = 0.607927... (A059956), the same as the density of A094387.

Examples

			3 is a term since A034968(3) = 2, and gcd(3, 2) = 1.
		

Crossrefs

Subsequences: A000040, A000142.
Similar sequences: A094387, A339076, A358975, A358977, A358978.

Programs

  • Mathematica
    q[n_] := Module[{k = 2, s = 0, m = n, r}, While[m > 0, r=Mod[m,k]; s+=r; m=(m-r)/k; k++]; CoprimeQ[n, s]]; Select[Range[120], q]
  • PARI
    is(n)={my(k=2, s=0, m=n); while(m>0, s+=m%k; m\=k; k++); gcd(s,n)==1;}

A377384 a(n) is the number of iterations that n requires to reach a noninteger or a factorial number under the map x -> x / f(x), where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k; a(n) = 0 if n is a factorial number.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2024

Keywords

Comments

The factorial numbers are fixed points of the map, since f(k!) = 1 for all k >= 0. Therefore they are arbitrarily assigned the value a(k!) = 0.
Each number n starts a chain of a(n) integers: n, n/f(n), (n/f(n))/f(n/f(n)), ..., of them the first a(n)-1 integers are factorial-base Niven numbers (A118363).

Examples

			a(8) = 2 since 8/f(8) = 4 and 4/f(4) = 2 is a factorial number that is reached after 2 iterations.
a(27) = 3 since 27/f(27) = 9, 9/f(9) = 3 and 3/f(3) = 3/2 is a noninteger that is reached after 3 iterations.
		

Crossrefs

Analogous sequences: A376615 (binary), A377208 (Zeckendorf).

Programs

  • Mathematica
    fdigsum[n_] := Module[{k = n, m = 2, r, s = 0}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s += r; m++]; s]; a[n_] := a[n] = Module[{s = fdigsum[n]}, If[s == 1, 0, If[!Divisible[n, s], 1, 1 + a[n/s]]]]; Array[a, 100]
  • PARI
    fdigsum(n) = {my(k = n, m = 2, r, s = 0); while([k, r] = divrem(k, m); k != 0 || r != 0, s += r; m++); s;}
    a(n) = {my(f = fdigsum(n)); if(f == 1, 0, if(n % f, 1, 1 + a(n/f)));}
    
  • Python
    def f(n, p=2): return n if n

Formula

a(n) = 0 if and only if n is in A000142 (by definition).
a(n) = 1 if and only if n is in A286607.
a(n) >= 2 if and only if n is in A118363 \ A000142 (i.e., n is a factorial-base Niven number that is not a factorial number).
a(n) >= 3 if and only if n is in A377385 \ A000142.
a(n) >= 4 if and only if n is in A377386 \ A000142.
a(n) < A000005(n).

A377386 Factorial-base Niven numbers (A118363) k such that m = k/f(k) and m/f(m) are also factorial-base Niven numbers, where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 36, 40, 48, 54, 72, 80, 96, 108, 120, 135, 144, 180, 192, 240, 280, 288, 360, 384, 432, 480, 576, 594, 600, 720, 840, 864, 1200, 1215, 1225, 1296, 1344, 1440, 1680, 1728, 1800, 2160, 2240, 2352, 2400, 2520, 2592, 2704, 2730, 2880, 3000
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2024

Keywords

Examples

			16 is a term since 16/f(16) = 4 is an integer, 4/f(4) = 2 is an integer, and 2/f(2) = 2 is an integer.
		

Crossrefs

Subsequence of A118363 and A377385.
A000142 is a subsequence.
Analogous sequences: A376617 (binary), A377210 (Zeckendorf).

Programs

  • Mathematica
    fdigsum[n_] := Module[{k = n, m = 2, r, s = 0}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s += r; m++]; s]; q[k_] := Module[{f = fdigsum[k], f2, m, n}, IntegerQ[m = k/f] && Divisible[m, f2 = fdigsum[m]] && Divisible[n = m/f2, fdigsum[n]]]; Select[Range[3000], q]
  • PARI
    fdigsum(n) = {my(k = n, m = 2, r, s = 0); while([k, r] = divrem(k, m); k != 0 || r != 0, s += r; m++); s;}
    is(k) = {my(f = fdigsum(k), f2, m); if(k % f, return(0)); m = k/f; f2 = fdigsum(m); !(m % f2) && !((m/f2) % fdigsum(m/f2)); }

A230419 Square array A(n,k) = difference of digit sums in factorial base representations (A007623) of n and k, n>=0, k>=0, read by antidiagonals; A(n,k) = A034968(n)-A034968(k).

Original entry on oeis.org

0, 1, -1, 1, 0, -1, 2, 0, 0, -2, 2, 1, 0, -1, -2, 3, 1, 1, -1, -1, -3, 1, 2, 1, 0, -1, -2, -1, 2, 0, 2, 0, 0, -2, 0, -2, 2, 1, 0, 1, 0, -1, 0, -1, -2, 3, 1, 1, -1, 1, -1, 1, -1, -1, -3, 3, 2, 1, 0, -1, 0, 1, 0, -1, -2, -3, 4, 2, 2, 0, 0, -2, 2, 0, 0, -2, -2, -4
Offset: 0

Views

Author

Antti Karttunen, Nov 10 2013

Keywords

Comments

Equivalently, A(n,k) = the sum of differences of digits in matching positions of the factorial base representations (A007623) of n and k.

Examples

			The top left corner array is:
   0,  1,  1,  2,  2,  3,  1,  2,  2,  3,  3, ...
  -1,  0,  0,  1,  1,  2,  0,  1,  1,  2,  2, ...
  -1,  0,  0,  1,  1,  2,  0,  1,  1,  2,  2, ...
  -2, -1, -1,  0,  0,  1, -1,  0,  0,  1,  1, ...
  -2, -1, -1,  0,  0,  1, -1,  0,  0,  1,  1, ...
  -3, -2, -2, -1, -1,  0, -2, -1, -1,  0,  0, ...
  -1,  0,  0,  1,  1,  2,  0,  1,  1,  2,  2, ...
  -2, -1, -1,  0,  0,  1, -1,  0,  0,  1,  1, ...
  -2, -1, -1,  0,  0,  1, -1,  0,  0,  1,  1, ...
  -3, -2, -2, -1, -1,  0, -2, -1, -1,  0,  0, ...
  -3, -2, -2, -1, -1,  0, -2, -1, -1,  0,  0, ...
  ...
		

Crossrefs

The topmost row: A034968 (and also the leftmost column negated).
Cf. A230415 (similar array which gives the number of differing digits).
Cf. A231713 (similar array which gives the sum of absolute differences).

Formula

A(col,row) = A034968(col)-A034968(row). [Where col is the column and row the row index of entry A(col,row)]
Equally, as a sequence, a(n) = A034968(A025581(n)) - A034968(A002262(n)).
For each entry, A(j,i) = -A(i,j), or as a sequence, a(A061579(n)) = -a(n). [The array is symmetric up to the sign of entries]
Also, for each entry A(i,j), abs(A(i,j)) <= A231713(i,j).

A319711 Sum of A034968(d) over proper divisors d of n, where A034968 gives the sum of digits in factorial base.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 4, 3, 5, 1, 7, 1, 4, 6, 6, 1, 8, 1, 10, 5, 6, 1, 11, 4, 5, 6, 9, 1, 15, 1, 10, 7, 7, 6, 15, 1, 6, 6, 16, 1, 15, 1, 13, 13, 8, 1, 16, 3, 10, 8, 9, 1, 14, 8, 14, 7, 6, 1, 25, 1, 5, 13, 13, 7, 18, 1, 13, 9, 18, 1, 21, 1, 6, 12, 12, 7, 15, 1, 25, 9, 8, 1, 26, 9, 7, 7, 20, 1, 29, 6, 16, 6, 9, 8, 21, 1, 10, 14, 19, 1, 18, 1, 15, 22
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{k = n, m = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s += r; m++]; s]; a[n_] := DivisorSum[n, d[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Mar 05 2024 *)
  • PARI
    A034968(n) = { my(s=0, b=2, d); while(n, d = (n%b); s += d; n = (n-d)/b; b++); (s); };
    A319711(n) = sumdiv(n,d,(dA034968(d));

Formula

a(n) = Sum_{d|n, dA034968(d).
a(n) = A319712(n) - A034968(n).

A276146 a(n) = A034968(A225901(n)).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 6, 7, 5, 6, 7, 8, 9, 10, 8, 9, 6, 7, 8, 9, 7, 8, 5, 6, 7, 8, 6, 7, 3, 4, 5, 6, 4, 5, 6, 7, 8, 9, 7, 8, 5, 6, 7, 8, 6, 7, 4, 5, 6, 7, 5, 6, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 6, 7, 4, 5, 6, 7, 5, 6, 3, 4, 5, 6, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 6, 7, 5, 6, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 3, 4, 5
Offset: 0

Views

Author

Antti Karttunen, Aug 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Range[2, 12]]; h[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1) k; i++]; n - s]; Table[h@ FromDigits[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #), b] &@ IntegerDigits[n, b], {n, 0, 120}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Range[# + 1] <= n &]; Most@ Rest[a][[All, 1]] /. {} -> {0}]; g[w_List] := Total[Times @@@ Transpose@{Map[Times @@ # &, Range@ Range[0, Length@ w]], Reverse@ Append[w, 0]}]; h[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1) k; i++]; n - s]; Table[h@ g[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #)] &@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 29 2016, function h after Jean-François Alcover at A034968 *)
  • Scheme
    (define (A276146 n) (A034968 (A225901 n)))

Formula

a(n) = A034968(A225901(n)).

A200747 Number of iterations of A034968 required to reach 1.

Original entry on oeis.org

0, 1, 2, 2, 3, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 2, 3, 4, 4, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 2, 3, 4, 4, 2, 2, 3, 4, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 2, 3, 4, 4, 2, 2, 3, 4, 2, 2, 3, 3, 3, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) = 1 when n is a factorial > 1.

Crossrefs

Cf. A034968.

Programs

  • PARI
    a(n)=local(r);while(n>1,n=A034968(n);r++);r

A007623 Integers written in factorial base.

Original entry on oeis.org

0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121, 200, 201, 210, 211, 220, 221, 300, 301, 310, 311, 320, 321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101, 1110, 1111, 1120, 1121, 1200, 1201, 1210, 1211, 1220, 1221, 1300, 1301, 1310, 1311, 1320, 1321, 2000, 2001, 2010
Offset: 0

Views

Author

Keywords

Comments

Places reading from right have values (1, 2, 6, 24, 120, ...) = factorials.
Also the reversed inversion vectors for the list of all finite permutations in reversed lexicographic order: A055089.
This concatenated representation is unsatisfactory for large n (above 36287999), when coefficients of 10 or greater start to appear. For these large numbers the representation given in A108731 is better. - N. J. A. Sloane, Jun 04 2012
For n < 10*10!-1, a(n) = concatenation of n-th row of triangle in A108731. - Reinhard Zumkeller, Jun 04 2012
a(n) = A049345(n) for n=0..23. - Reinhard Zumkeller, Jan 05 2014
For n = 36288000 = 10 * 10!, the digits in factorial base are {10, 0, 0, 0, 0, 0, 0, 0, 0, 0}. - Michael De Vlieger, Oct 11 2015, corrected and edited by M. F. Hasler, Nov 27 2018
The alt text in xkcd comic #2835 describes "Numbers larger than about 3.6 million" to be illegal. See links. - David Cleaver, Sep 30 2023

Examples

			a(47) = 1321 because 47 = 1*4! + 3*3! + 2*2! + 1*1!
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 192.
  • F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House, 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142, A034968 (sum of digits), A060130 (number of nonzero digits), A099563 (the most significant digit).
Cf. also A055089, A055881, A060112, A060495. Permutation of A064039.
See index entry "factorial base representation" for many more related sequences.
See also primorial base A049345.

Programs

  • Haskell
    a007623 n | n <= 36287999 = read $ concatMap show (a108731_row n) :: Int
              | otherwise     = error "representation would be ambiguous"
    -- Reinhard Zumkeller, Jun 04 2012
    (Scheme, R6RS standard) (define (A007623 n) (let loop ((n n) (s 0) (p 1) (i 2)) (if (zero? n) s (let ((d (mod n i))) (loop (/ (- n d) i) (+ (* p d) s) (* 10 p) (+ 1 i)))))) ;; In older Schemes use modulo instead of mod. - Antti Karttunen, Feb 13 2016
    
  • Maple
    a := n -> if nargs<2 then a(n,2) elif n
    				
  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++ ]; m = n; len = i; dList = Table[0, {len}]; Do[ currDigit = 0; While[m >= j!, m = m - j!; currDigit++ ]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; Table[FromDigits[factBaseIntDs[n]], {n, 0, 50}] (* Alonso del Arte, May 03 2006 *)
    lim = 50; m = 1; While[Factorial@ m < lim, m++]; m; IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] & /@ Range@ lim (* Michael De Vlieger, Oct 11 2015, Version 10.2 *)
  • PARI
    apply( a(n,p=2)=if(nM. F. Hasler, Mar 27 2007; minor edit Nov 26 2018
    
  • Python
    def a(n, p=2): return n if n

Extensions

More terms from R. K. Guy

A055089 List of all finite permutations in reversed colexicographic ordering.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 3, 1, 2, 2, 3, 1, 3, 2, 1, 1, 2, 4, 3, 2, 1, 4, 3, 1, 4, 2, 3, 4, 1, 2, 3, 2, 4, 1, 3, 4, 2, 1, 3, 1, 3, 4, 2, 3, 1, 4, 2, 1, 4, 3, 2, 4, 1, 3, 2, 3, 4, 1, 2, 4, 3, 1, 2, 2, 3, 4, 1, 3, 2, 4, 1, 2, 4, 3, 1, 4, 2, 3, 1, 3, 4, 2, 1, 4, 3, 2, 1, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 3, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2000

Keywords

Examples

			In this table, each row consists of A001563(n) permutations of n+1 terms; i.e., we have (1/) 2,1/ 1,3,2; 3,1,2; 2,3,1; 3,2,1/ 1,2,4,3; 2,1,4,3; ... .
Append to each an infinite number of fixed terms and we get a list of rearrangements of the natural numbers, but with only a finite number of terms permuted:
1/2,3,4,5,6,7,8,9,...
2,1/3,4,5,6,7,8,9,...
1,3,2/4,5,6,7,8,9,...
3,1,2/4,5,6,7,8,9,...
2,3,1/4,5,6,7,8,9,...
3,2,1/4,5,6,7,8,9,...
1,2,4,3/5,6,7,8,9,...
2,1,4,3/5,6,7,8,9,...
Alternatively, if we take only the first n terms of each such infinite row, then the first n! rows give all permutations of the elements 1,2,...,n.
		

Crossrefs

Inversion vectors: A007623, cycle counts: A055090, minimum number of transpositions: A055091, minimum number of adjacent transpositions: A034968, order of each permutation: A055092, number of non-fixed elements: A055093, positions of inverses: A056019, positions after Foata transform: A065181; positions of fixed-point-free involutions: A064640.
Cf. A195663, array of the infinite rows.
This permutation list gives essentially the same information as A030298/A030299, but in a more compact way, by skipping those permutations of A030298 that start with a fixed element.
A220658(n) gives the rank r of the permutation of which the term at a(n) is an element.
A220659(n) gives the zero-based position (from the left) of that a(n) in that permutation of rank r.
A084558(r)+1 gives the size of the finite subsequence (of the r-th infinite, but finitary permutation) which has been included in this list.

Programs

  • Maple
    factorial_base := proc(nn) local n,a,d,j,f; n := nn; if(0 = n) then RETURN([0]); fi; a := []; f := 1; j := 2; while(n > 0) do d := floor(`mod`(n,(j*f))/f); a := [d,op(a)]; n := n - (d*f); f := j*f; j := j+1; od; RETURN(a); end;
    fexlist2permlist := proc(a) local n,b,j; n := nops(a); if(0 = n) then RETURN([1]); fi; b := fexlist2permlist(cdr(a)); for j from 1 to n do if(b[j] >= ((n+1)-a[1])) then b[j] := b[j]+1; fi; od; RETURN([op(b),(n+1)-a[1]]); end;
    fac_base := n -> fac_base_aux(n,2); fac_base_aux := proc(n,i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i),i+1)), (n mod i)]); fi; end;
    PermRevLexUnrank := n -> `if`((0 = n),[1],fexlist2permlist(fac_base(n)));
    cdr := proc(l) if 0 = nops(l) then ([]) else (l[2..nops(l)]); fi; end; # "the tail of the list"
    # Same algorithm in different guise, showing how permutations are composed of adjacent transpositions (compare to algorithm PermUnrank3R at A060117):
    PermRevLexUnrankAMSDaux := proc(n,r, pp) local s,p,k; p := pp; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); for k from n-s to n-1 do p := permul(p,[[k,k+1]]); od; RETURN(PermRevLexUnrankAMSDaux(n-1, r-(s*((n-1)!)), p)); fi; end;
    PermRevLexUnrankAMSD := proc(r) local n; n := nops(factorial_base(r)); convert(PermRevLexUnrankAMSDaux(n+1,r,[]),'permlist',1+(((r+2) mod (r+1))*n)); end;
  • Mathematica
    A055089L[n_] := Reverse@SortBy[DeleteCases[Permutations@Range@n, {, n}], Reverse]; Flatten@Array[A055089L, 4] (* JungHwan Min, Aug 28 2016 *)

Formula

[seq(op(PermRevLexUnrank(j)), j=0..)]; (see Maple code given below).

Extensions

Name changed by Tilman Piesk, Feb 01 2012

A276150 Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Comments

The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019

Examples

			For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
		

Crossrefs

Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Cf. A014601, A042963 (positions of even and odd terms), A343048 (positions of records).
Differs from analogous A034968 for the first time at n=24.

Programs

  • Mathematica
    nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)
    nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
  • Python
    from sympy import prime, primefactors
    def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1
    def a276086(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m
    def a(n): return Omega(a276086(n))
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(n) = 1 + a(A276151(n)) = 1 + a(n-A002110(A276084(n))), a(0) = 0.
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
a(n) = A001222(A276086(n)) = A001222(A278226(n)).
a(n) >= A371091(n) >= A267263(n).
From Antti Karttunen, Feb 27 2019: (Start)
a(n) = A000120(A277022(n)).
a(A283477(n)) = A324342(n).
(End)
a(n) = A373606(n) + A373607(n). - Antti Karttunen, Jun 19 2024
Previous Showing 11-20 of 87 results. Next