cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 55 results. Next

A373197 Sum of all squarefree numbers from prime(n) to prime(n+1) - 1.

Original entry on oeis.org

2, 3, 11, 17, 11, 42, 17, 62, 49, 59, 133, 114, 83, 89, 98, 223, 59, 254, 206, 71, 302, 161, 341, 462, 97, 203, 314, 107, 330, 824, 386, 398, 275, 856, 149, 460, 635, 494, 337, 702, 179, 1294, 191, 582, 197, 1635, 1950, 449, 227, 690, 943, 239, 983, 1013, 1036
Offset: 1

Views

Author

Gus Wiseman, May 29 2024

Keywords

Examples

			This is the sequence of row sums of A005117 treated as a triangle with row-lengths A373198:
   2
   3
   5   6
   7  10
  11
  13  14  15
  17
  19  21  22
  23  26
  29  30
  31  33  34  35
  37  38  39
  41  42
  43  46
  47  51
  53  55  57  58
		

Crossrefs

Counting all numbers (not just squarefree) gives A371201.
For the sectioning of A005117 (squarefree between prime):
- sum is A373197 (this sequence)
- length is A373198 = A061398 - 1
- min is A000040
- max is A112925, opposite A112926
For squarefree numbers between powers of two:
- sum is A373123
- length is A077643, partial sums A143658
- min is A372683, delta A373125, indices A372540, firsts of A372475
- max is A372889, delta A373126
For primes between powers of two:
- sum is A293697 (except initial terms)
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, delta A013603
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Total[Select[Range[Prime[n],Prime[n+1]-1],SquareFreeQ]],{n,15}]

A293697 a(n) is the sum of prime numbers between 2^n+1 and 2^(n+1).

Original entry on oeis.org

2, 3, 12, 24, 119, 341, 1219, 4361, 16467, 57641, 208987, 780915, 2838550, 10676000, 39472122, 148231324, 559305605, 2106222351, 7995067942, 30299372141, 115430379568, 440354051430, 1683364991290, 6448757014608, 24754017328490, 95132828618112, 366232755206338
Offset: 0

Views

Author

Olivier Gérard, Oct 15 2017

Keywords

Examples

			From _Gus Wiseman_, Jun 02 2024: (Start)
Row-sums of:
   2
   3
   5   7
  11  13
  17  19  23  29  31
  37  41  43  47  53  59  61
  67  71  73  79  83  89  97 101 103 107 109 113 127
(End)
		

Crossrefs

Cf. A036378 (number of primes summed).
Cf. A293696 (triangle of partial sums).
Minimum is A014210 or A104080, indices A372684.
Maximum is A014234, delta A013603.
Counting all numbers (not just prime) gives A049775.
For squarefree instead of prime numbers we have A373123, length A077643.
For prime indices we have A373124.
Partial sums give A130739(n+1).

Programs

  • Mathematica
    Table[Plus @@
      Table[Prime[i], {i, PrimePi[2^(n)] + 1, PrimePi[2^(n + 1)]}], {n, 0,
       24}]

A372683 Least squarefree number >= 2^n.

Original entry on oeis.org

1, 2, 5, 10, 17, 33, 65, 129, 257, 514, 1027, 2049, 4097, 8193, 16385, 32770, 65537, 131073, 262145, 524289, 1048577, 2097154, 4194305, 8388609, 16777217, 33554433, 67108865, 134217730, 268435457, 536870913, 1073741826, 2147483649, 4294967297, 8589934594
Offset: 0

Views

Author

Gus Wiseman, May 26 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
       1:                    1 ~ {1}
       2:                   10 ~ {2}
       5:                  101 ~ {1,3}
      10:                 1010 ~ {2,4}
      17:                10001 ~ {1,5}
      33:               100001 ~ {1,6}
      65:              1000001 ~ {1,7}
     129:             10000001 ~ {1,8}
     257:            100000001 ~ {1,9}
     514:           1000000010 ~ {2,10}
    1027:          10000000011 ~ {1,2,11}
    2049:         100000000001 ~ {1,12}
    4097:        1000000000001 ~ {1,13}
    8193:       10000000000001 ~ {1,14}
   16385:      100000000000001 ~ {1,15}
   32770:     1000000000000010 ~ {2,16}
   65537:    10000000000000001 ~ {1,17}
  131073:   100000000000000001 ~ {1,18}
  262145:  1000000000000000001 ~ {1,19}
  524289: 10000000000000000001 ~ {1,20}
		

Crossrefs

For primes instead of powers of two we have A112926, opposite A112925, sum A373197, length A373198.
Counting zeros instead of all bits gives A372473, firsts of A372472.
These are squarefree numbers at indices A372540, firsts of A372475.
Counting ones instead of all bits gives A372541, firsts of A372433.
The opposite (greatest squarefree number <= 2^n) is A372889.
The difference from 2^n is A373125.
For prime instead of squarefree we have:
- bits A372684, firsts of A035100
- zeros A372474, firsts of A035103
- ones A372517, firsts of A014499
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308, length A070939 or A029837.
A061398 counts squarefree numbers between primes (exclusive).
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&],{n,0,10}]
  • PARI
    a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ Michel Marcus, May 29 2024
    
  • Python
    from itertools import count
    from sympy import factorint
    def A372683(n): return next(i for i in count(1<Chai Wah Wu, Aug 26 2024

Formula

a(n) = A005117(A372540(n)).
a(n) = A067535(2^n). - R. J. Mathar, May 31 2024

A372684 Least k such that prime(k) >= 2^n.

Original entry on oeis.org

1, 3, 5, 7, 12, 19, 32, 55, 98, 173, 310, 565, 1029, 1901, 3513, 6543, 12252, 23001, 43391, 82026, 155612, 295948, 564164, 1077872, 2063690, 3957810, 7603554, 14630844, 28192751, 54400029, 105097566, 203280222, 393615807, 762939112, 1480206280, 2874398516, 5586502349
Offset: 1

Views

Author

Gus Wiseman, May 30 2024

Keywords

Examples

			The numbers prime(a(n)) together with their binary expansions and binary indices begin:
        2:                       10 ~ {2}
        5:                      101 ~ {1,3}
       11:                     1011 ~ {1,2,4}
       17:                    10001 ~ {1,5}
       37:                   100101 ~ {1,3,6}
       67:                  1000011 ~ {1,2,7}
      131:                 10000011 ~ {1,2,8}
      257:                100000001 ~ {1,9}
      521:               1000001001 ~ {1,4,10}
     1031:              10000000111 ~ {1,2,3,11}
     2053:             100000000101 ~ {1,3,12}
     4099:            1000000000011 ~ {1,2,13}
     8209:           10000000010001 ~ {1,5,14}
    16411:          100000000011011 ~ {1,2,4,5,15}
    32771:         1000000000000011 ~ {1,2,16}
    65537:        10000000000000001 ~ {1,17}
   131101:       100000000000011101 ~ {1,3,4,5,18}
   262147:      1000000000000000011 ~ {1,2,19}
   524309:     10000000000000010101 ~ {1,3,5,20}
  1048583:    100000000000000000111 ~ {1,2,3,21}
  2097169:   1000000000000000010001 ~ {1,5,22}
  4194319:  10000000000000000001111 ~ {1,2,3,4,23}
  8388617: 100000000000000000001001 ~ {1,4,24}
		

Crossrefs

The opposite (greatest k such that prime(k) <= 2^n) is A007053.
Positions of first appearances in A035100.
The distance from prime(a(n)) to 2^n is A092131.
Counting zeros instead of all bits gives A372474, firsts of A035103.
Counting ones instead of all bits gives A372517, firsts of A014499.
For primes between powers of 2:
- sum A293697
- length A036378
- min A104080 or A014210
- max A014234, delta A013603
For squarefree numbers between powers of 2:
- sum A373123
- length A077643, run-lengths of A372475
- min A372683, delta A373125, indices A372540
- max A372889, delta A373126, indices A143658
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925, opposite A112926

Programs

  • Mathematica
    Table[PrimePi[If[n==1,2,NextPrime[2^n]]],{n,30}]
  • PARI
    a(n) = primepi(nextprime(2^n)); \\ Michel Marcus, May 31 2024

Formula

a(n>1) = A007053(n) + 1.
a(n) = A000720(A104080(n)).
prime(a(n)) = A104080(n).
prime(a(n)) - 2^n = A092131(n).

Extensions

More terms from Michel Marcus, May 31 2024

A372471 Irregular triangle read by rows where row n lists the binary indices of the n-th prime number.

Original entry on oeis.org

2, 1, 2, 1, 3, 1, 2, 3, 1, 2, 4, 1, 3, 4, 1, 5, 1, 2, 5, 1, 2, 3, 5, 1, 3, 4, 5, 1, 2, 3, 4, 5, 1, 3, 6, 1, 4, 6, 1, 2, 4, 6, 1, 2, 3, 4, 6, 1, 3, 5, 6, 1, 2, 4, 5, 6, 1, 3, 4, 5, 6, 1, 2, 7, 1, 2, 3, 7, 1, 4, 7, 1, 2, 3, 4, 7, 1, 2, 5, 7, 1, 4, 5, 7, 1, 6, 7
Offset: 1

Views

Author

Gus Wiseman, May 07 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			We have prime(12) = (2^1 + 2^3 + 2^6)/2, so row 12 is (1,3,6).
Each prime followed by its binary indices:
   2: 2
   3: 1 2
   5: 1 3
   7: 1 2 3
  11: 1 2 4
  13: 1 3 4
  17: 1 5
  19: 1 2 5
  23: 1 2 3 5
  29: 1 3 4 5
  31: 1 2 3 4 5
  37: 1 3 6
  41: 1 4 6
  43: 1 2 4 6
  47: 1 2 3 4 6
		

Crossrefs

Row lengths are A014499.
Second column is A023506(n) + 1.
Final column is A035100.
Prime-indexed rows of A048793.
Row-sums are A372429, restriction of A029931 (sum of binary indices).
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020.
A070939 gives length of binary expansion.

Programs

  • Mathematica
    Table[Join@@Position[Reverse[IntegerDigits[Prime[n],2]],1],{n,15}]

A372475 Length of binary expansion (or number of bits) of the n-th squarefree number.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The 10th squarefree number is 14, with binary expansion (1,1,1,0), so a(10) = 4.
		

Crossrefs

For prime instead of squarefree we have A035100, 1's A014499, 0's A035103.
Restriction of A070939 to A005117.
Run-lengths are A077643.
For weight instead of length we have A372433 (restrict A000120 to A005117).
For zeros instead of length we have A372472, firsts A372473.
Positions of first appearances are A372540.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    IntegerLength[Select[Range[1000],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A372475(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m).bit_length() # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A070939(A005117(n)).
a(n) = A372472(n) + A372433(n).

A372540 Least k such that the k-th squarefree number has binary expansion of length n. Index of the smallest squarefree number >= 2^n.

Original entry on oeis.org

1, 2, 4, 7, 12, 21, 40, 79, 158, 315, 625, 1246, 2492, 4983, 9963, 19921, 39845, 79689, 159361, 318726, 637462, 1274919, 2549835, 5099651, 10199302, 20398665, 40797328, 81594627, 163189198, 326378285, 652756723, 1305513584, 2611027095, 5222054082, 10444108052
Offset: 0

Views

Author

Gus Wiseman, May 10 2024

Keywords

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
       1:                  1 ~ {1}
       2:                 10 ~ {2}
       5:                101 ~ {1,3}
      10:               1010 ~ {2,4}
      17:              10001 ~ {1,5}
      33:             100001 ~ {1,6}
      65:            1000001 ~ {1,7}
     129:           10000001 ~ {1,8}
     257:          100000001 ~ {1,9}
     514:         1000000010 ~ {2,10}
    1027:        10000000011 ~ {1,2,11}
    2049:       100000000001 ~ {1,12}
    4097:      1000000000001 ~ {1,13}
    8193:     10000000000001 ~ {1,14}
   16385:    100000000000001 ~ {1,15}
   32770:   1000000000000010 ~ {2,16}
   65537:  10000000000000001 ~ {1,17}
  131073: 100000000000000001 ~ {1,18}
		

Crossrefs

Counting zeros instead of length gives A372473, firsts of A372472.
For prime instead of squarefree we have:
- zeros A372474, firsts of A035103
- ones A372517, firsts of A014499
- bits A372684, firsts of A035100
Positions of first appearances in A372475, run-lengths A077643.
For weight instead of length we have A372541, firsts of A372433.
Indices of the squarefree numbers listed by A372683.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A070939 counts bits, binary length, or length of binary expansion.

Programs

  • Mathematica
    nn=1000;
    ssnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
    dcs=IntegerLength[Select[Range[nn],SquareFreeQ],2];
    Table[Position[dcs,i][[1,1]],{i,ssnm[dcs]}]
  • Python
    from itertools import count
    from math import isqrt
    from sympy import mobius, factorint
    def A372540(n): return next(sum(mobius(a)*(k//a**2) for a in range(1, isqrt(k)+1)) for k in count(1<Chai Wah Wu, May 12 2024

Formula

A005117(a(n)) = A372683(n).
a(n) = A143658(n)+1 for n > 1. - Chai Wah Wu, Aug 26 2024

Extensions

a(24)-a(34) from Chai Wah Wu, May 12 2024

A372473 Least k such that the k-th squarefree number has exactly n zeros in its binary expansion.

Original entry on oeis.org

1, 2, 7, 12, 21, 40, 79, 158, 315, 1247, 1246, 2492, 4983, 9963, 19921, 39845, 79689, 159361, 318726, 637462, 1274919, 2549835, 5099651, 10199302, 20398665, 40797328, 81594627, 163189198, 326378285, 652756723, 1305513584, 2611027095, 5222054082, 10444108052
Offset: 0

Views

Author

Gus Wiseman, May 09 2024

Keywords

Comments

Note that the data is not strictly increasing.

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
     1:              1 ~ {1}
     2:             10 ~ {2}
    10:           1010 ~ {2,4}
    17:          10001 ~ {1,5}
    33:         100001 ~ {1,6}
    65:        1000001 ~ {1,7}
   129:       10000001 ~ {1,8}
   257:      100000001 ~ {1,9}
   514:     1000000010 ~ {2,10}
  2051:   100000000011 ~ {1,2,12}
  2049:   100000000001 ~ {1,12}
  4097:  1000000000001 ~ {1,13}
  8193: 10000000000001 ~ {1,14}
		

Crossrefs

Positions of first appearances in A372472.
For prime instead of squarefree we have A372474, A035103, A372517, A014499.
Counting bits (length) gives A372540, firsts of A372475, runs A077643.
Counting 1's (weight) instead of 0's gives A372541, firsts of A372433.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A070939 gives length of binary expansion (number of bits).
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    nn=10000;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    dcs=DigitCount[Select[Range[nn],SquareFreeQ],2,0];
    Table[Position[dcs,i][[1,1]],{i,0,spnm[dcs]}]
  • Python
    from math import isqrt
    from itertools import count
    from sympy import factorint, mobius
    from sympy.utilities.iterables import multiset_permutations
    def A372473(n):
        if n==0: return 1
        for l in count(n):
            m = 1<Chai Wah Wu, May 10 2024

Extensions

a(23)-a(33) from Chai Wah Wu, May 10 2024

A372474 Least k such that the k-th prime number has exactly n zeros in its binary expansion.

Original entry on oeis.org

2, 1, 8, 7, 19, 32, 99, 55, 174, 310, 565, 1029, 1902, 3513, 6544, 6543, 23001, 43395, 82029, 155612, 295957, 564164, 1077901, 3957811, 3965052, 7605342, 14630844, 28194383, 54400029, 105097568, 393615809, 393615807, 762939128, 1480206930, 2874398838, 5586502349
Offset: 0

Views

Author

Gus Wiseman, May 11 2024

Keywords

Examples

			The prime numbers A000040(a(n)) together with their binary expansions and binary indices begin:
         3:                          11 ~ {1,2}
         2:                          10 ~ {2}
        19:                       10011 ~ {1,2,5}
        17:                       10001 ~ {1,5}
        67:                     1000011 ~ {1,2,7}
       131:                    10000011 ~ {1,2,8}
       523:                  1000001011 ~ {1,2,4,10}
       257:                   100000001 ~ {1,9}
      1033:                 10000001001 ~ {1,4,11}
      2053:                100000000101 ~ {1,3,12}
      4099:               1000000000011 ~ {1,2,13}
      8209:              10000000010001 ~ {1,5,14}
     16417:             100000000100001 ~ {1,6,15}
     32771:            1000000000000011 ~ {1,2,16}
     65539:           10000000000000011 ~ {1,2,17}
     65537:           10000000000000001 ~ {1,17}
    262147:         1000000000000000011 ~ {1,2,19}
    524353:        10000000000001000001 ~ {1,7,20}
   1048609:       100000000000000100001 ~ {1,6,21}
   2097169:      1000000000000000010001 ~ {1,5,22}
   4194433:     10000000000000010000001 ~ {1,8,23}
   8388617:    100000000000000000001001 ~ {1,4,24}
  16777729:   1000000000000001000000001 ~ {1,10,25}
  67108913: 100000000000000000000110001 ~ {1,5,6,27}
  67239937: 100000000100000000000000001 ~ {1,18,27}
		

Crossrefs

Positions of first appearances in A035103.
For squarefree instead of prime we have A372473, firsts of A372472.
Counting ones (weight) gives A372517, firsts of A014499.
Counting squarefree bits gives A372540, firsts of A372475, runs A077643.
Counting squarefree ones gives A372541, firsts of A372433.
Counting bits (length) gives A372684, firsts of A035100.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A070939 gives length of binary expansion (number of bits).

Programs

  • Mathematica
    nn=10000;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    dcs=DigitCount[Select[Range[nn],PrimeQ],2,0];
    Table[Position[dcs,i][[1,1]],{i,0,spnm[dcs]}]
  • Python
    from itertools import count
    from sympy import isprime, primepi
    from sympy.utilities.iterables import multiset_permutations
    def A372474(n):
        for l in count(n):
            m = 1<Chai Wah Wu, May 13 2024

Formula

a(n) = A000720(A066195(n)). - Robert Israel, May 13 2024

Extensions

a(22)-a(35) from and offset corrected by Chai Wah Wu, May 13 2024

A373125 Difference between 2^n and the least squarefree number >= 2^n.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 28 2024

Keywords

Crossrefs

For prime instead of squarefree we have A092131, opposite A013603.
For primes instead of powers of 2: A240474, A240473, A112926, A112925.
Difference between 2^n and A372683(n).
The opposite is A373126, delta of A372889.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A070939 or (preferably) A029837 gives length of binary expansion.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).
For primes between powers of 2:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234, delta A013603

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&]-2^n,{n,0,100}]

Formula

a(n) = A372683(n)-2^n. - R. J. Mathar, May 31 2024
Previous Showing 11-20 of 55 results. Next