A223532
Triangle S(n,k) by rows: coefficients of 6^(n/2)*(x^(5/6)*d/dx)^n when n=0,2,4,6,...
Original entry on oeis.org
1, 1, 6, 7, 84, 36, 91, 1638, 1404, 216, 1729, 41496, 53352, 16416, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656, 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512
Offset: 1
Triangle begins:
1;
1, 6;
7, 84, 36;
91, 1638, 1404, 216;
1729, 41496, 53352, 16416, 1296;
43225, 1296750, 2223000, 1026000, 162000, 7776;
1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512, 12083904, 279936;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223511
Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1
Offset: 1
1;
9,1;
153,27,1;
3825,855,54,1;
126225,32895,2745,90,1;
5175225,1507815,150930,6705,135,1;
253586025,80565975,9205245,499590,13860,189,1;
14454403425,4926412575,623675430,39180645,1345050,25578,252,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223512-
A223522,
A223168-
A223172,
A223523-
A223532.
-
b[0]:=g(x):
for j from 1 to 10 do
b[j]:=simplify(x^9*diff(b[j-1],x$1);
end do;
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016
-
rows = 8;
t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A223522
Triangle T(n,k) represents the coefficients of (x^20*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
Original entry on oeis.org
1, 20, 1, 780, 60, 1, 45240, 4320, 120, 1, 3483480, 382200, 13800, 200, 1, 334414080, 40556880, 1734600, 33600, 300, 1, 38457619200, 5039012160, 243505080, 5699400, 69300, 420, 1
Offset: 1
1;
20,1;
780,60,1;
45240,4320,120,1;
3483480,382200,13800,200,1;
334414080,40556880,1734600,33600,300,1;
38457619200,5039012160,243505080,5699400,69300,420,1;
5153320972800,718724260800,38155703040,1024322880,15262800,127680,560,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A049352
A triangle of numbers related to triangle A030524.
Original entry on oeis.org
1, 4, 1, 20, 12, 1, 120, 128, 24, 1, 840, 1400, 440, 40, 1, 6720, 16240, 7560, 1120, 60, 1, 60480, 201600, 129640, 27720, 2380, 84, 1, 604800, 2681280, 2275840, 656320, 80080, 4480, 112, 1, 6652800, 38142720, 41370560, 15402240, 2498160, 196560
Offset: 1
Triangle starts:
{1};
{4,1};
{20,12,1};
{120,128,24,1};
{840,1400,440,40,1};
...
E.g. Row polynomial E(3,x)= 20*x + 12*x^2 + x^3.
a(4,2)=128=4*(4*5)+3*(4*4) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*4*5)=20 colored versions, e.g. ((1c1),(2c1,3c4,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 4 colors, c1..c4, can be chosen and the vertex labeled 4 with j=2 can come in 5 colors, e.g. c1..c5. Therefore there are 4*((1)*(1*4*5))=80 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*4)*(1*4))=48 such forests, e.g. ((1c1,3c2)(2c1,4c4)) or ((1c1,3c3)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+3)!/6, 10); # Peter Luschny, Jan 28 2016
-
a[n_, k_] := (n!* Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n+3*j-1, 3*j-1], {j, 1, k}])/(3^k*k!); Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(# + 3)!/6&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+3*j-1,3*j-1),j,1,k))/(3^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
A157398
A partition product of Stirling_2 type [parameter k = -4] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 4, 1, 12, 28, 1, 72, 112, 280, 1, 280, 1400, 1400, 3640, 1, 1740, 15120, 21000, 21840, 58240, 1, 8484, 126420, 401800, 382200, 407680, 1106560, 1, 57232, 1538208, 6370000, 8357440, 8153600, 8852480, 24344320, 1
Offset: 1
A134151
Triangle of numbers obtained from the partition array A134150.
Original entry on oeis.org
1, 4, 1, 28, 4, 1, 280, 44, 4, 1, 3640, 392, 44, 4, 1, 58240, 5544, 456, 44, 4, 1, 1106560, 80640, 5992, 456, 44, 4, 1, 24344320, 1519840, 88256, 6248, 456, 44, 4, 1, 608608000, 31420480, 1631392, 90048, 6248, 456, 44, 4, 1, 17041024000, 766525760, 33293120
Offset: 1
[1]; [4,1]; [28,4,1]; [280,44,4,1]; [3640,392,44,4,1];...
A134149
A certain partition array in Abramowitz-Stegun (A-St) order.
Original entry on oeis.org
1, 4, 1, 28, 12, 1, 280, 112, 48, 24, 1, 3640, 1400, 1120, 280, 240, 40, 1, 58240, 21840, 16800, 7840, 4200, 6720, 960, 560, 720, 60, 1, 1106560, 407680, 305760, 274400, 76440, 117600, 54880, 47040, 9800, 23520, 6720, 980, 1680, 84, 1, 24344320
Offset: 1
[1]; [4,1]; [28,12,1]; [280,112,48,24,1]; [3640,1400,1120,280,240,40,1]; ...
a(4,3)=48 from the third (k=3) partition (2^2) of 4: 4!*((4/2!)^2)/2 = 48, because S2(4,2,1) = 4!!! = 4*1 = 4.
There are a(4,3) = 48 = 3*4^2 unordered 2-forests with 4 vertices, composed of two increasing quaternary (4-ary) trees, each with two vertices: there are 3 increasing labelings (1,2)(3,4); (1,3)(2,4); (1,4)(2,3) and each tree comes in four versions from the quaternary structure.
A134150
A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(4)/M_3.
Original entry on oeis.org
1, 4, 1, 28, 4, 1, 280, 28, 16, 4, 1, 3640, 280, 112, 28, 16, 4, 1, 58240, 3640, 1120, 784, 280, 112, 64, 28, 16, 4, 1, 1106560, 58240, 14560, 7840, 3640, 1120, 784, 448, 280, 112, 64, 28, 16, 4, 1, 24344320, 1106560, 232960, 101920, 78400, 58240, 14560, 7840
Offset: 1
Triangle begins:
[1];
[4,1];
[28,4,1];
[280,28,16,4,1];
[3640,280,112,28,16,4,1];
...
a(4,3)=16 from the third (k=3) partition (2^2) of 4: (4)^2 = 16, because S2(4,2,1) = 4!! = 4*1 = 4.
A223169
Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n is odd, and of 3^(n/2)*(x^(2/3)*d/dx)^n when n is even.
Original entry on oeis.org
1, 1, 3, 4, 3, 4, 24, 9, 28, 42, 9, 28, 252, 189, 27, 280, 630, 270, 27, 280, 3360, 3780, 1080, 81, 3640, 10920, 7020, 1404, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 218400, 187200, 56160, 6480, 243, 58240, 1048320, 1965600
Offset: 0
Triangle begins:
1;
1, 3;
4, 3;
4, 24, 9;
28, 42, 9;
28, 252, 189, 27;
280, 630, 270, 27;
280, 3360, 3780, 1080, 81;
3640, 10920, 7020, 1404, 81;
3640, 54600, 81900, 35100, 5265, 243,
58240, 218400, 187200, 56160, 6480, 243
Cf.
A223168-
A223172,
A223523-
A223532,
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522.
A223170
Triangle S(n,k) by rows: coefficients of 4^((n-1)/2)*(x^(1/4)*d/dx)^n when n is odd, and of 4^(n/2)*(x^(3/4)*d/dx)^n when n is even.
Original entry on oeis.org
1, 1, 4, 5, 4, 5, 40, 16, 45, 72, 16, 45, 540, 432, 64, 585, 1404, 624, 64, 585, 9360, 11232, 3328, 256, 9945, 31824, 21216, 4352, 256, 9945, 198900, 318240, 141440, 21760, 1024, 208845, 835380, 742560, 228480, 26880, 1024, 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096
Offset: 0
Triangle begins:
1;
1, 4;
5, 4;
5, 40, 16;
45, 72, 16;
45, 540, 432, 64;
585, 1404, 624, 64;
585, 9360, 11232, 3328, 256;
9945, 31824, 21216, 4352, 256;
9945, 198900, 318240, 141440, 21760, 1024;
208845, 835380, 742560, 228480, 26880, 1024;
208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096;
Cf.
A223168-
A223172,
A223523-
A223532,
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522.
-
a[0]:= f(x):
for i from 1 to 13 do
a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 )));
end do;
-
nmax = 12;
b[0] = Exp[x]; For[ i = 1 , i <= nmax , i++, b[i] = 4^Mod[i + 1, 2]*x^((2 Mod[i + 1, 2] + 1)/4)*D[b[i - 1], x]] // Simplify;
row[1] = {1}; row[n_] := List @@ Expand[b[n]/f[x]] /. x -> 1;
Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Feb 22 2019, from Maple *)
Previous
Showing 11-20 of 37 results.
Next
Comments