cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A035600 Number of points of L1 norm 6 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 24, 146, 608, 1970, 5336, 12642, 27008, 53154, 97880, 170610, 284000, 454610, 703640, 1057730, 1549824, 2220098, 3116952, 4298066, 5831520, 7796978, 10286936, 13408034, 17282432, 22049250, 27866072, 34910514, 43381856, 53502738, 65520920, 79711106
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [( 4*n^6 +40*n^4 +46*n^2 )/45: n in [0..30]]; // Vincenzo Librandi, Apr 23 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^5/(1-x)^7,{x,0,33}],x] (* Vincenzo Librandi, Apr 23 2012 *)
  • PARI
    a(n)=(4*n^6+40*n^4+46*n^2)/45 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (4*n^6 + 40*n^4 + 46*n^2)/45. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^5/(1-x)^7. - Colin Barker, Apr 15 2012
a(n) = 2*A069039(n). - R. J. Mathar, Dec 10 2013

A035602 Number of points of L1 norm 8 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 32, 258, 1408, 5890, 20256, 59906, 157184, 374274, 822560, 1690370, 3281280, 6065410, 10746400, 18347010, 30316544, 48663554, 76117536, 116323586, 174074240, 255582978, 368804128, 523804162, 733189632
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^8+8*7*n^6+4*7*11*n^4+8*3*11*n^2)/315: n in [0..30]]; // Vincenzo Librandi, Apr 24 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^7/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, Apr 24 2012 *)
  • PARI
    a(n)=2*n^2*(n^6+28*n^4+154*n^2+132)/315 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (2*n^8 + 8*7*n^6 + 4*7*11*n^4 + 8*3*11*n^2)/(5*7*9). - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^7/(1-x)^9. - Colin Barker, Apr 15 2012
a(n) = 2*A099195(n). - R. J. Mathar, Dec 10 2013

A035603 Number of points of L1 norm 9 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 36, 326, 1992, 9290, 35436, 115598, 332688, 864146, 2060980, 4573910, 9545560, 18892250, 35704060, 64797470, 113461024, 192441122, 317222212, 509663334, 800061160, 1229718378, 1854105484, 2746713774, 4003707568
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n^9+168*n^7+1596*n^5+3272*n^3+630*n)/2835: n in [0..30]]; // Vincenzo Librandi, Apr 24 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^8/(1-x)^10,{x,0,30}],x] (* Vincenzo Librandi, Apr 24 2012 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,2,36,326,1992,9290,35436,115598,332688,864146},30] (* Harvey P. Dale, Jan 17 2021 *)
  • PARI
    a(n)=(4*n^9+168*n^7+1596*n^5+3272*n^3+630*n)/2835 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (4*n^9 + 168*n^7 + 1596*n^5 + 3272*n^3 + 630*n)/(5*7*9*9). - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^8/(1-x)^10. - Colin Barker, Apr 15 2012
a(n) = 2*A099196(n). - R. J. Mathar, Dec 10 2013

A343599 T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 4, 1, 6, 18, 1, 8, 32, 88, 1, 10, 50, 170, 450, 1, 12, 72, 292, 912, 2364, 1, 14, 98, 462, 1666, 4942, 12642, 1, 16, 128, 688, 2816, 9424, 27008, 68464, 1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 1, 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, 1, 22, 242, 1782, 9922, 44726, 170610, 568150, 1690370, 4573910, 11414898
Offset: 0

Views

Author

R. J. Mathar, Apr 21 2021

Keywords

Examples

			The full array starts
     1      2      2      2      2      2      2      2      2
     1      4      8     12     16     20     24     28     32
     1      6     18     38     66    102    146    198    258
     1      8     32     88    192    360    608    952   1408
     1     10     50    170    450   1002   1970   3530   5890
     1     12     72    292    912   2364   5336  10836  20256
     1     14     98    462   1666   4942  12642  28814  59906
     1     16    128    688   2816   9424  27008  68464 157184
     1     18    162    978   4482  16722  53154 148626 374274
		

Crossrefs

Cf. A035607 (by antidiags), A008574 (n=1), A005899 (n=2), A008412 (n=3), A008413 (n=4), A008414 (n=5), A001105 (k=2), A035597 (k=3), A035598 (k=4).
Main diagonal gives A050146(n+1).

Programs

  • Maple
    A343599 := proc(n,k)
        local g,x,y ;
        g := (1+y)/(1-x-y-x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
  • Mathematica
    T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)

Formula

G.f.: (1+y)/(1-x-y-x*y).
T(n,k) = A008288(n,k) + A008288(n,k-1).

A035601 Number of points of L1 norm 7 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 28, 198, 952, 3530, 10836, 28814, 68464, 148626, 299660, 568150, 1022760, 1761370, 2919620, 4680990, 7288544, 11058466, 16395516, 23810534, 33940120, 47568618, 65652532, 89347502, 120037968, 159369650, 209284972
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [( 8*n^6 +4*5*7*n^4 +8*7*7*n^2 +2*5*9 )*n/(5*7*9): n in [0..30]]; // Vincenzo Librandi, Apr 23 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^6/(1-x)^8,{x,0,30}],x] (* Vincenzo Librandi, Apr 23 2012 *)
  • PARI
    (8*n^7+140*n^5+392*n^3+90*n)/315 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (8*n^6 + 4*5*7*n^4 + 8*7*7*n^2 + 2*5*9)*n/(5*7*9). - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^6/(1-x)^8. - Colin Barker, Apr 15 2012
a(n) = 2*A099193(n). - R. J. Mathar, Dec 10 2013

A035604 Number of points of L1 norm 10 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 40, 402, 2720, 14002, 58728, 209762, 658048, 1854882, 4780008, 11414898, 25534368, 53972178, 108568488, 209070018, 387328512, 693230658, 1202893992, 2029779538, 3339504032, 5369283570, 8453107432, 13053926690, 19804348032, 29557550050, 43450388072
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A035607.

Programs

  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    f[d_, m_] := Sum[2^i*Binomial[d, i]*Binomial[m-1, i-1], {i, 1, Min[d, m]}];
    a[n_] := f[n, 10];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 24 2017, from Maple *)
  • PARI
    x='x+O('x^99); concat(0, Vec(2*x*(1+x)^9/(1-x)^11)) \\ Altug Alkan, Mar 12 2018

Formula

a(n) = 2n^2/14175 * (2n^8 + 120n^6 + 1806n^4 + 7180n^2 + 5067).
G.f.: 2*x*(1+x)^9/(1-x)^11. - Colin Barker, Apr 15 2012
a(n) = 2*A099197(n). - R. J. Mathar, Dec 10 2013
a(n) = a(n-1) + A035603(n) + A035603(n-1). - Bruce J. Nicholson, Mar 11 2018

A363418 Square array read by ascending antidiagonals: T(n,k) = [x^(n*k)] ((1 + x)/(1 - x))^k for n, k >= 1.

Original entry on oeis.org

2, 2, 8, 2, 16, 38, 2, 24, 146, 192, 2, 32, 326, 1408, 1002, 2, 40, 578, 4672, 14002, 5336, 2, 48, 902, 11008, 69002, 142000, 28814, 2, 56, 1298, 21440, 216002, 1038984, 1459810, 157184, 2, 64, 1766, 36992, 525002, 4320608, 15856206, 15158272, 864146
Offset: 1

Views

Author

Peter Bala, Jun 12 2023

Keywords

Comments

The n-th row sequence {T(n, k) : k >= 1} satisfies the Gauss congruences, that is, T(n, m*p^r) == T(n, m*p^(r-1)) ( mod p^r ) for all primes p and positive integers m and r.
We conjecture that each row sequence satisfies the stronger supercongruences T(n, m*p^r) == T(n, m*p^(r-1)) ( mod p^(3*r) ) for all primes p >= 5 and positive integers m and r.

Examples

			Square array begins
 n\k |  1   2     3      4        5          6           7
 - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  1  |  2   8    38    192     1002       5336       28814   ...   (A002003)
  2  |  2  16   146   1408    14002     142000     1459810   ...   (A103885)
  3  |  2  24   326   4672    69002    1038984    15856206   ...   (A333715)
  4  |  2  32   578  11008   216002    4320608    87588482   ...
  5  |  2  40   902  21440   525002   13104184   331482062   ...
  6  |  2  48  1298  36992  1086002   32497680   985524066   ...
  7  |  2  56  1766  58688  2009002   70097384  2478629134   ...
  8  |  2  64  2306  87552  3424002  136485568  5513464322   ...
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

A002003 (row 1), A103885 (row 2), A333715 (row 3). Cf. A035607, A362724 - A362733, A363419.

Programs

  • Maple
    # display as a square array
    T := (n,k) -> add( binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j) , j = 0..k): for n from 1 to 10 do seq(T(n, k), k = 1..10) end do;
    #alternative program
    seq(print(seq(simplify(2*k*hypergeom([1 - k, 1 - n*k], [2], 2)), k = 1..10)), n = 1..10);
    # display as a sequence
    seq(seq(T(n+1-i, i), i = 1..n), n = 1..10);
  • PARI
    T(n,k) = sum(j=0, k, binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j)) \\ Andrew Howroyd, Jan 05 2024

Formula

T(n,k) = Sum_{j = 0..k} binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j).
T(n,k) = 1/n * [x^k] ((1 + x)/(1 - x))*(n*k).
T(n,k) = (1/n)*Sum_{j = 0..k} binomial(n*k, j)*binomial((n + 1)*k - j - 1, k - j).
T(2*n,k) = [x^(n*k)] Chebyshev_T(k,(1 + x)/(1 - x)), where Chebyshev_T(n,x) denotes the n-th Chebyshev polynomial of the first kind. See A053120.
T(n,k) = Sum_{j = 1..k} (2^j)*binomial(k, j)*binomial(n*k - 1, n*k - j).
T(n,k) = (2*k) * hypergeom([1 - k, 1 - n*k], [2], 2).
Define E(n,x) = exp( Sum_{j >= 1} T(n,j)*x^j/j ). Then T(n+1,k) = [x^k] E(n,x)^k.
E(n,x) = (1/x) * the series reversion of x/E(n-1,x) for n >= 2.
E(n,x)^n = (1/x) * the series reversion of x*((1 - x)/(1 + x))^n.
E(m,x) appears to be the g.f. of the (m + 1)-Schroeder numbers. See A027307 (m = 2) and the cross references there.
The o.g.f. for row n is the diagonal of the bivariate rational function (1/n) * t*f(x)^n/(1 - t*f(x)^n), where f(x) = (1 + x)/(1 - x), and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Previous Showing 21-27 of 27 results.