A061198
Square table by antidiagonals where T(n,k) is number of partitions of k where no part appears more than n times; also partitions of k where no parts are multiples of (n+1).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 2, 2, 1, 1, 0, 3, 4, 3, 2, 1, 1, 0, 4, 5, 4, 3, 2, 1, 1, 0, 5, 7, 6, 5, 3, 2, 1, 1, 0, 6, 9, 9, 6, 5, 3, 2, 1, 1, 0, 8, 13, 12, 10, 7, 5, 3, 2, 1, 1, 0, 10, 16, 16, 13, 10, 7, 5, 3, 2, 1, 1, 0, 12, 22, 22, 19, 14, 11, 7, 5, 3, 2, 1, 1, 0, 15, 27, 29, 25, 20, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Square table T(n,k) begins:
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ...
1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, ...
1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, ...
1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 34, ...
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, ...
1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, ...
1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, ...
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, ...
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, ...
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...
A061199 is the same table but excluding cases where n>k.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k), j=0..min(n/i, k))))
end:
A:= (n, k)-> b(k$2, n):
seq(seq(A(n, d-n), n=0..d), d=0..13); # Alois P. Heinz, Jan 26 2023
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, k], {j, 0, Min[n/i, k]}]]];
A[n_, k_] := b[k, k, n];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Feb 11 2023, after Alois P. Heinz *)
A296163
a(n) = [x^n] Product_{k>=1} ((1 - x^(5*k))/(1 - x^k))^n.
Original entry on oeis.org
1, 1, 5, 22, 105, 501, 2456, 12160, 60801, 306130, 1550255, 7887034, 40281720, 206405967, 1060602800, 5463059772, 28199365873, 145832364580, 755420838614, 3918935839970, 20357605331355, 105878815699042, 551273881133750, 2873161931172668, 14988243880188600
Offset: 0
-
Table[SeriesCoefficient[Product[((1 - x^(5 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k) + x^(3 k) + x^(4 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 24}]
(* Calculation of constant d: *) With[{k = 5}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
A213598
Number of partitions of n in which no parts are multiples of 49.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173524
Offset: 0
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^2 + q^3 + 2*q^4 + 3*q^5 + 5*q^6 + 7*q^7 + 11*q^8 + 15*q^9 + 22*q^10 + ...
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 401. Eq. (49)
Cf.
A000009 (m=2),
A000726 (m=3),
A001935 (m=4),
A035959 (m=5),
A219601 (m=6),
A035985 (m=7),
A261775 (m=8),
A104502 (m=9),
A261776 (m=10),
A092885 (m=25), this sequence (m=49).
-
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 49, n, 49}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x^49] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 13 2014 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^49 + A) / eta(x + A), n))};
A320607
Number of parts in all partitions of n in which no part occurs more than four times.
Original entry on oeis.org
1, 3, 6, 12, 15, 29, 41, 65, 91, 132, 179, 257, 339, 465, 616, 823, 1062, 1402, 1790, 2320, 2939, 3750, 4701, 5946, 7398, 9243, 11428, 14161, 17368, 21372, 26056, 31823, 38596, 46838, 56499, 68208, 81868, 98292, 117489, 140390, 167068, 198796, 235655, 279239
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(2*i*(i+1) [0, l[1]*j]+l)(b(n-i*j, min(n-i*j, i-1))), j=0..min(n/i, 4))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..50);
-
Table[Length[Flatten[Select[IntegerPartitions[n],Max[Tally[#][[All,2]]]<5&]]],{n,50}] (* Harvey P. Dale, May 18 2020 *)
A332311
Number of compositions (ordered partitions) of n into distinct parts where no part is a multiple of 5.
Original entry on oeis.org
1, 1, 1, 3, 3, 4, 9, 11, 11, 19, 44, 31, 61, 87, 117, 144, 279, 311, 389, 541, 640, 1003, 1225, 2145, 2493, 3452, 3507, 5417, 6671, 8821, 11580, 17959, 21043, 26289, 34797, 41536, 59637, 72707, 85871, 110947, 172472, 175873, 249691, 327801, 418779, 512748
Offset: 0
a(6) = 9 because we have [6], [4, 2], [3, 2, 1], [3, 1, 2], [2, 4], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3].
-
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
seq(a(n), n=0..55); # Alois P. Heinz, Feb 09 2020
-
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!, Sum[b[n - i j, i - 1, p + j], {j, 0, Min[Mod[i, 5], 1, n/i]}]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 55] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)
A259357
Expansion of f(-x^5)^2 / f(-x, -x^4) in powers of x where f(,) is the Ramanujan general theta function.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 6, 7, 7, 9, 9, 11, 11, 13, 13, 16, 17, 19, 20, 23, 24, 27, 29, 32, 34, 38, 40, 46, 48, 52, 56, 62, 65, 72, 76, 84, 89, 97, 102, 113, 119, 129, 137, 149, 157, 171, 181, 196, 208, 224, 236, 256, 270, 290, 308, 331
Offset: 0
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + ...
G.f. = q^23 + q^143 + q^263 + q^383 + 2*q^503 + q^623 + 2*q^743 + 2*q^863 + ...
- G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part III, Springer, 2012, see p. 12, Entry 2.1.3, Equation (2.1.21).
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, equation 3.
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}];
-
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, -1, 0, 0, -1][k%5+1]), n))};
A259358
Expansion of f(-x^5)^2 / f(-x^2, -x^3) in powers of x where f(,) is the Ramanujan general theta function.
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 2, 1, 2, 2, 2, 2, 3, 2, 4, 4, 5, 4, 6, 5, 7, 7, 8, 8, 11, 10, 12, 13, 15, 14, 18, 17, 21, 21, 24, 25, 29, 29, 34, 35, 39, 40, 47, 47, 53, 55, 61, 63, 72, 73, 82, 86, 94, 97, 109, 112, 124, 129, 141, 147, 162, 167, 183, 192, 208, 217, 237
Offset: 0
G.f. = 1 + x^2 + x^3 + x^4 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + ...
G.f. = q^47 + q^287 + q^407 + q^527 + 2*q^767 + q^887 + 2*q^1007 + ...
- G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part III, Springer, 2012, see p. 12, Entry 2.1.3, Equation (2.1.22).
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, equation 4.
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x^5] / (QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5]), {x, 0, n}];
-
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, 0, -1, -1, 0][k%5+1]), n))};
A262364
Expansion of Product_{k>=1} (1-x^(5*k))/(1-x^(2*k)).
Original entry on oeis.org
1, 0, 1, 0, 2, -1, 3, -1, 5, -2, 6, -3, 10, -5, 13, -7, 19, -11, 25, -15, 35, -22, 45, -30, 62, -41, 79, -55, 105, -75, 134, -98, 175, -130, 220, -168, 284, -219, 355, -280, 451, -360, 561, -455, 705, -578, 870, -725, 1085, -910, 1331, -1132, 1644, -1410
Offset: 0
G.f. = 1 + x^2 + 2*x^4 - x^5 + 3*x^6 - x^7 + 5*x^8 - 2*x^9 + ...
-
nmax = 60; CoefficientList[Series[Product[(1-x^(5*k))/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x]
CoefficientList[Series[QPochhammer[x^5]/QPochhammer[x^2], {x, 0, 60}], x]
-
lista(nn) = {q='q+O('q^nn); Vec(eta(q^5)/eta(q^2))} \\ Altug Alkan, Mar 21 2018
A278668
Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^3 in powers of x.
Original entry on oeis.org
1, 3, 9, 22, 51, 107, 218, 420, 788, 1428, 2531, 4375, 7430, 12377, 20313, 32833, 52402, 82585, 128750, 198588, 303428, 459375, 689710, 1027243, 1518709, 2229375, 3251022, 4710777, 6785378, 9717677, 13841991, 19614182, 27656250, 38810312, 54216128, 75406438
Offset: 0
G.f.: 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 107*x^5 + 218*x^6 + ...
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
A278680
Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^4 in powers of x.
Original entry on oeis.org
1, 4, 14, 40, 105, 251, 570, 1226, 2540, 5075, 9855, 18630, 34439, 62340, 110805, 193624, 333235, 565415, 947040, 1567130, 2564425, 4152535, 6658711, 10579380, 16663755, 26033200, 40357641, 62106290, 94912385, 144088840, 217368655, 325945320, 485950150, 720515475
Offset: 0
G.f.: 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 251*x^5 + 570*x^6 + ...
-
nmax = 30; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
Comments