cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A051303 Number of 3-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 1, 30, 605, 9030, 110901, 1200150, 11932285, 111885510, 1006471301, 8786447670, 75039565965, 630534185190, 5234341175701, 43059373189590, 351805681631645, 2859550165976070, 23152657123816101, 186907026783617910, 1505512392025329325
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(8^n - 9*6^n + 15*5^n - 4*4^n - 9*3^n + 8*2^n - 2) / Factorial(3) : n in [0..25]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A051303:=n->(8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!: seq(A051303(n), n=0..30); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    Table[(8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!, {n,0,25}] (* G. C. Greubel, Oct 06 2017 *)
  • PARI
    for(n=0,25, print1((8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2 )/3!, ", ")) \\ G. C. Greubel, Oct 06 2017
    

Formula

a(n) = (8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!.
G.f.: x^3*(360*x^3-78*x^2-x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Nov 27 2012
a(n) = 29*a(n-1) - 343*a(n-2) + 2135*a(n-3) - 7504*a(n-4) + 14756*a(n-5) - 14832*a(n-6) + 5760*a(n-7) for n > 6. - Wesley Ivan Hurt, Oct 06 2017
E.g.f.: exp(x)*(exp(x) - 1)^3*(2 - 2*exp(x) - 3*exp(2*x) + 3*exp(3*x) + exp(4*x))/6. - Stefano Spezia, Sep 28 2024

A051304 Number of 4-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 5, 780, 41545, 1442910, 39400305, 923889960, 19550316665, 384954289170, 7196416532305, 129495073447740, 2264887575116985, 38775513868485030, 653195404307491505, 10869004241198535120, 179171681947204584505, 2932562923651659410490, 47737465871974206925905
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/(24): n in [0..50]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,50, print1((16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = (1/4!) * (16^n -18*12^n +60*10^n -9*9^n -102*8^n +105*7^n -90*6^n +95*5^n -31*4^n -33*3^n +28*2^n -6).
G.f. x^4*( 5 +365*x -7935*x^2 +46885*x^3 -191420*x^4 +2285460*x^5 -14380560*x^6 +27216000*x^7 ) / ( (x-1) *(9*x-1) *(6*x-1) *(7*x-1) *(3*x-1) *(5*x-1) *(2*x-1) *(12*x-1) *(10*x-1) *(4*x-1) *(8*x-1) *(16*x-1) ). - R. J. Mathar, Jun 13 2013

Extensions

Terms a(16) onward added by G. C. Greubel, Oct 07 2017

A051305 Number of 5-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 543, 118629, 12564636, 907001550, 51751693161, 2527016053023, 110737868741742, 4489929936371880, 171944175793168779, 6309813148166785257, 224210698542088771968
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/(120): n in [0..50]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,50, print1((32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = (1/5!)*(32^n -30*24^n +150*20^n -45*18^n +85*17^n -515*16^n -450*15^n +1365*14^n +390*13^n -1680*12^n -22*11^n +1875*10^n -1080*9^n -685*8^n +980*7^n -669*6^n +575*5^n -195*4^n -150*3^n +124*2^n -24).

A051306 Number of 6-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 300, 233821, 78501094, 15532759830, 2213672795040, 254206334062527, 25146386270836578, 2235664320306737320, 183782806231396191820, 14248056393984957136593
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(64^n - 45*48^n + 300*40^n - 135*36^n + 510*34^n - 198*33^n - 1499*32^n - 2700*30^n + 6615*28^n + 1215*27^n - 780*26^n + 3750*25^n - 6750*24^n - 8280*23^n + 3828*22^n - 12285*21^n + 19425*20^n + 31635*19^n - 30105*18^n - 34425*17^n + 24770*16^n + 13125*15^n - 3885*14^n + 390*13^n - 5670*12^n - 12485*11^n + 28575*10^n - 16560*9^n - 3435*8^n + 7868*7^n - 4995*6^n + 3800*5^n - 1301*4^n - 822*3^n + 668*2^n - 120)/6!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)

Formula

a(n) = (1/6!)*(64^n -45*48^n +300*40^n -135*36^n +510*34^n -198*33^n -1499*32^n -2700*30^n +6615*28^n +1215*27^n -780*26^n +3750*25^n -6750*24^n -8280*23^n +3828*22^n -12285*21^n +19425*20^n +31635*19^n -30105*18^n -34425*17^n +24770*16^n +13125*15^n -3885*14^n +390*13^n -5670*12^n -12485*11^n +28575*10^n -16560*9^n -3435*8^n +7868*7^n -4995*6^n +3800*5^n -1301*4^n -822*3^n +668*2^n -120).

A379706 Number of nonempty labeled antichains of subsets of [n] such that the largest subset is of size 2.

Original entry on oeis.org

0, 0, 1, 10, 97, 1418, 40005, 2350474, 286192257, 71213783154, 35883905262757, 36419649682704418, 74221659280476132145, 303193505953871645554778, 2480118046704094643352342117, 40601989176407026666590990389338, 1329877330167226219547875498464450945, 87134888326188320631048795061602782878050
Offset: 0

Views

Author

John Tyler Rascoe, Dec 30 2024

Keywords

Examples

			a(2) = 1: {{1,2}}.
a(3) = 10: {{1,2}}, {{1,3}}, {{2,3}}, {{1,2},{3}}, {{1,3},{2}}, {{2,3},{1}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
		

Crossrefs

Cf. A000225, A000372, A036239, A126883, A379707, (column k=2 of A379712).

Programs

  • Python
    from math import comb
    def A379706(n): return sum(comb(n,i)*(2**comb(n-i,2) - 1) for i in range(n-1))

Formula

a(n) = Sum_{i=0..n-2} binomial(n,i) * (2^binomial(n-i,2) - 1).

A005530 Number of Boolean functions of n variables from Post class F(8,inf); number of degenerate Boolean functions of n variables.

Original entry on oeis.org

2, 6, 38, 942, 325262, 25768825638, 129127208425774833206, 2722258935367507707190488025630791841374
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 129.

Crossrefs

a(n) = 2^(2^n) - A000371(n). Cf. A036239, A036240.

Programs

  • Mathematica
    Sum[(-1)^(j + 1) Binomial[n, j] 2^2^(n - j), {j, 1, n}]
  • PARI
    for(n=1,10, print1(sum(j=1,n, (-1)^(j+1)*binomial(n,j)*2^(2^(n-j))), ", ")) \\ G. C. Greubel, Oct 06 2017

Formula

a(n) = Sum_{j=1..n} (-1)^(j+1)*binomial(n,j)*2^(2^(n-j)).

Extensions

More terms from Vladeta Jovovic, Goran Kilibarda

A051307 Number of 7-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 135, 329205, 365924948, 205640068950, 75013516525425, 20611869786684495, 4661763066154503606, 917701003163074793520, 163180081989646991509955, 26889766005753182579964345, 4182467653250525215771670424, 622388054953695081193665509610
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Formula

a(n) = 1/7! * (128^n -63*96^n +525*80^n -315*72^n +1785*68^n -1386*66^n +455*65^n -3486*64^n -9450*60^n +21315*56^n +8505*54^n -13650*52^n -5355*51^n +36750*50^n -5145*49^n -14805*48^n -57960*46^n -4725*45^n +45738*44^n +36120*43^n -191835*42^n +43050*41^n +74725*40^n -73710*39^n +333165*38^n +104895*37^n -73395*36^n -54390*35^n -354144*34^n -423192*33^n +383621*32^n +143220*31^n -292425*30^n +753855*29^n +181545*28^n -314685*27^n -114660*26^n -916125*25^n -268716*24^n +1998493*23^n +140833*22^n -2359350*21^n +458675*20^n +2147950*19^n -961758*18^n -1428000*17^n +933380*16^n +578175*15^n -614362*14^n +143052*13^n +45990*12^n -244860*11^n +356475*10^n -199521*9^n -12244*8^n +64778*7^n -40026*6^n +28035*5^n -9604*4^n -5292*3^n +4248*2^n -720).

A051363 Number of 6-element families of an n-element set such that every 3 members of the family have a nonempty intersection.

Original entry on oeis.org

0, 0, 0, 0, 112, 40286, 5485032, 534844548, 45066853496, 3538771308282, 267882021563464, 19861835713621616, 1453175611052688600, 105278656040052332838, 7564280930105061931496, 539399446172552069053404
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Formula

a(n) = (1/6!)*(64^n -20*56^n +90*52^n +30*50^n +25*49^n -420*48^n -180*47^n +450*46^n +60*45^n +615*44^n +1683*43^n -3252*42^n -6030*41^n +8520*40^n +10560*39^n -15849*38^n -13005*37^n +26410*36^n +10655*35^n -50385*34^n +33390*33^n +29480*32^n -82010*31^n +91215*30^n -67380*29^n +36870*28^n -15249*27^n +4380*26^n -1215*25^n +1390*24^n -695*23^n -1574*22^n +3255*21^n -3075*20^n +1800*19^n -675*18^n +150*17^n +70*16^n -340*14^n +510*13^n -340*12^n +85*11^n -225*8^n +225*7^n +274*4^n -274*3^n -120*2^n +120).

A051364 Number of 5-element families of an n-element set such that every 3 members of the family have a nonempty intersection.

Original entry on oeis.org

0, 0, 0, 0, 225, 21571, 1174122, 51441824, 2038356243, 76714338477, 2804947403364, 100732231517698, 3572491367063421, 125474030774355263, 4371052010746528926, 151172238539268318372
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Programs

  • Mathematica
    Table[1/5! (32^n - 10*28^n + 30*26^n + 5*25^n - 80*24^n + 45*23^n + 105*22^n - 217*21^n + 205*20^n - 120*19^n + 45*18^n - 10*17^n - 9*16^n + 40*14^n - 60*13^n + 40*12^n - 10*11^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = (1/5!)*(32^n - 10*28^n + 30*26^n + 5*25^n - 80*24^n + 45*23^n + 105*22^n - 217*21^n + 205*20^n - 120*19^n + 45*18^n - 10*17^n - 9*16^n + 40*14^n - 60*13^n + 40*12^n - 10*11^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24).

A051365 Number of 4-element families of an n-element set such that every 3 members of the family have a nonempty intersection.

Original entry on oeis.org

0, 0, 0, 3, 275, 8475, 192385, 3831093, 71466675, 1285857975, 22632300245, 392522268633, 6734698919575, 114576024346875, 1935649374363705, 32505459713369373, 543014736097852475, 9029329231317194175, 149522990698790644765, 2466942184607949641313
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Programs

  • Magma
    [(16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[1/4! (16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/4!)*(16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6).
G.f.: -x^3*(47062848*x^7 -42816008*x^6 +13976678*x^5 -2170583*x^4 +168932*x^3 -5672*x^2 +2*x +3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(7*x -1)*(8*x -1)*(11*x -1)*(12*x -1)*(13*x -1)*(14*x -1)*(16*x -1)). - Colin Barker, Jul 12 2013

Extensions

More terms from Colin Barker, Jul 12 2013
Previous Showing 11-20 of 30 results. Next