A051303
Number of 3-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 1, 30, 605, 9030, 110901, 1200150, 11932285, 111885510, 1006471301, 8786447670, 75039565965, 630534185190, 5234341175701, 43059373189590, 351805681631645, 2859550165976070, 23152657123816101, 186907026783617910, 1505512392025329325
Offset: 0
-
[(8^n - 9*6^n + 15*5^n - 4*4^n - 9*3^n + 8*2^n - 2) / Factorial(3) : n in [0..25]]; // G. C. Greubel, Oct 06 2017
-
A051303:=n->(8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!: seq(A051303(n), n=0..30); # Wesley Ivan Hurt, Oct 06 2017
-
Table[(8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!, {n,0,25}] (* G. C. Greubel, Oct 06 2017 *)
-
for(n=0,25, print1((8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2 )/3!, ", ")) \\ G. C. Greubel, Oct 06 2017
A051304
Number of 4-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 5, 780, 41545, 1442910, 39400305, 923889960, 19550316665, 384954289170, 7196416532305, 129495073447740, 2264887575116985, 38775513868485030, 653195404307491505, 10869004241198535120, 179171681947204584505, 2932562923651659410490, 47737465871974206925905
Offset: 0
-
[(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/(24): n in [0..50]]; // G. C. Greubel, Oct 07 2017
-
Table[(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
-
for(n=0,50, print1((16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, ", ")) \\ G. C. Greubel, Oct 07 2017
A051305
Number of 5-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 0, 543, 118629, 12564636, 907001550, 51751693161, 2527016053023, 110737868741742, 4489929936371880, 171944175793168779, 6309813148166785257, 224210698542088771968
Offset: 0
-
[(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/(120): n in [0..50]]; // G. C. Greubel, Oct 07 2017
-
Table[(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
-
for(n=0,50, print1((32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, ", ")) \\ G. C. Greubel, Oct 07 2017
A051306
Number of 6-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 0, 300, 233821, 78501094, 15532759830, 2213672795040, 254206334062527, 25146386270836578, 2235664320306737320, 183782806231396191820, 14248056393984957136593
Offset: 0
-
Table[(64^n - 45*48^n + 300*40^n - 135*36^n + 510*34^n - 198*33^n - 1499*32^n - 2700*30^n + 6615*28^n + 1215*27^n - 780*26^n + 3750*25^n - 6750*24^n - 8280*23^n + 3828*22^n - 12285*21^n + 19425*20^n + 31635*19^n - 30105*18^n - 34425*17^n + 24770*16^n + 13125*15^n - 3885*14^n + 390*13^n - 5670*12^n - 12485*11^n + 28575*10^n - 16560*9^n - 3435*8^n + 7868*7^n - 4995*6^n + 3800*5^n - 1301*4^n - 822*3^n + 668*2^n - 120)/6!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
A379706
Number of nonempty labeled antichains of subsets of [n] such that the largest subset is of size 2.
Original entry on oeis.org
0, 0, 1, 10, 97, 1418, 40005, 2350474, 286192257, 71213783154, 35883905262757, 36419649682704418, 74221659280476132145, 303193505953871645554778, 2480118046704094643352342117, 40601989176407026666590990389338, 1329877330167226219547875498464450945, 87134888326188320631048795061602782878050
Offset: 0
a(2) = 1: {{1,2}}.
a(3) = 10: {{1,2}}, {{1,3}}, {{2,3}}, {{1,2},{3}}, {{1,3},{2}}, {{2,3},{1}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
A005530
Number of Boolean functions of n variables from Post class F(8,inf); number of degenerate Boolean functions of n variables.
Original entry on oeis.org
2, 6, 38, 942, 325262, 25768825638, 129127208425774833206, 2722258935367507707190488025630791841374
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 129.
- Alois P. Heinz, Table of n, a(n) for n = 1..12
- T. E. Allen, J. Goldsmith, N. Mattei, Counting, Ranking, and Randomly Generating CP-nets, 2014.
- R. K. Guy, Letter to N. J. A. Sloane, Mar 1974
- Y. Raekow and K. Ziegler, A taxonomy of non-cooperatively computable functions, Presented at WEWoRC 2011 (link to conference record).
- I. Tomescu, Excerpts from "Introducese in Combinatorica" (1972), pp. 230-1, 44-5, 128-9. (Annotated scanned copy)
- Index entries for sequences related to Boolean functions
-
Sum[(-1)^(j + 1) Binomial[n, j] 2^2^(n - j), {j, 1, n}]
-
for(n=1,10, print1(sum(j=1,n, (-1)^(j+1)*binomial(n,j)*2^(2^(n-j))), ", ")) \\ G. C. Greubel, Oct 06 2017
A051307
Number of 7-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 0, 135, 329205, 365924948, 205640068950, 75013516525425, 20611869786684495, 4661763066154503606, 917701003163074793520, 163180081989646991509955, 26889766005753182579964345, 4182467653250525215771670424, 622388054953695081193665509610
Offset: 0
A051363
Number of 6-element families of an n-element set such that every 3 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 112, 40286, 5485032, 534844548, 45066853496, 3538771308282, 267882021563464, 19861835713621616, 1453175611052688600, 105278656040052332838, 7564280930105061931496, 539399446172552069053404
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
A051364
Number of 5-element families of an n-element set such that every 3 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 225, 21571, 1174122, 51441824, 2038356243, 76714338477, 2804947403364, 100732231517698, 3572491367063421, 125474030774355263, 4371052010746528926, 151172238539268318372
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
Table[1/5! (32^n - 10*28^n + 30*26^n + 5*25^n - 80*24^n + 45*23^n + 105*22^n - 217*21^n + 205*20^n - 120*19^n + 45*18^n - 10*17^n - 9*16^n + 40*14^n - 60*13^n + 40*12^n - 10*11^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
A051365
Number of 4-element families of an n-element set such that every 3 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 3, 275, 8475, 192385, 3831093, 71466675, 1285857975, 22632300245, 392522268633, 6734698919575, 114576024346875, 1935649374363705, 32505459713369373, 543014736097852475, 9029329231317194175, 149522990698790644765, 2466942184607949641313
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
[(16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[1/4! (16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((16^n - 4*14^n + 6*13^n - 4*12^n + 11^n - 6*8^n + 6*7^n + 11*4^n - 11*3^n - 6*2^n + 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017