A037952 a(n) = binomial(n, floor((n-1)/2)).
0, 1, 1, 3, 4, 10, 15, 35, 56, 126, 210, 462, 792, 1716, 3003, 6435, 11440, 24310, 43758, 92378, 167960, 352716, 646646, 1352078, 2496144, 5200300, 9657700, 20058300, 37442160, 77558760, 145422675, 300540195, 565722720, 1166803110, 2203961430, 4537567650
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
- Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 25.
- C. J. Colbourn, Table of CAN(2, k, 2)
- Emeric Deutsch, Ordered trees with prescribed root degrees, node degrees and branch lengths, Discrete Math., 282, 2004, 89-94.
- O. Guibert and T. Mansour, Restricted 132-involutions, Sem. Lotharingien de Combinatoire, 48, 2002, Article B48a (Corollary 4.2).
- M. Miyakawa, A. Nozaki, G. Pogosyan, and I. G. Rosenberg, A map from the lower-half of the n-Cube onto the (n-1)-Cube which preserves intersecting antichains, Discr. Appl. Math. 92 (2-3) (1999) 223-228.
- M. van de Vel, Determination of msd(L^n), J. Algebraic Combin., 9 (1999), 161-171.
- Eric Weisstein's World of Mathematics, Pinnacle Set.
- Eric Weisstein's World of Mathematics, Plummer-Toft Graph.
Crossrefs
Programs
-
Haskell
a037952 n = a037952_list !! n a037952_list = zipWith (-) (tail a001405_list) a001405_list -- Reinhard Zumkeller, Mar 04 2012
-
Magma
[Binomial(n, Floor((n-1)/2)): n in [0..40]]; // G. C. Greubel, Jun 21 2022
-
Maple
a:= n-> binomial(n, floor((n-1)/2)): seq(a(n), n=0..35); # Alois P. Heinz, Sep 19 2017
-
Mathematica
Table[ Binomial[n, Floor[n/2]], {n, 0, 35}]//Differences (* Jean-François Alcover, Jun 10 2013 *) f[n_] := Binomial[n, Floor[(n-1)/2]]; Array[f, 35, 0] (* Robert G. Wilson v, Nov 13 2014 *)
-
PARI
a(n) = binomial(n, (n-1)\2); \\ Altug Alkan, Oct 03 2018
-
SageMath
[binomial(n, (n-1)//2) for n in (0..40)] # G. C. Greubel, Jun 21 2022
Formula
E.g.f.: BesselI(1, 2*x) + BesselI(2, 2*x). - Vladeta Jovovic, Apr 28 2003
O.g.f.: (1-sqrt(1-4x^2))/(x - 2x^2 + x*sqrt(1-4x^2)).
Convolution of A001405 and A126120 shifted right: g001405(x)*g126120(x) = g037952(x)/x. - Philippe Deléham, Mar 17 2007
D-finite with recurrence: (n+2)*a(n) + (-n-2)*a(n-1) + 2*(-2*n+1)*a(n-2) + 4*(n-2)*a(n-3) = 0. - R. J. Mathar, Jan 25 2013. Proved by Robert Israel, Nov 13 2014
For n > 0: a(n) = A265848(n,0). - Reinhard Zumkeller, Dec 24 2015
a(n) = binomial(n, (n-2)/2) = A001791(n/2), n even; a(n) = binomial(n, (n+1)/2) = A001700((n-1)/2), n odd. - Enrique Navarrete, Dec 21 2019
From R. J. Mathar, Sep 23 2021: (Start)
a(n) = Sum_{m=1..n} A053121(n,m) [comment Callan-Deutsch].
a(2n+1) = A000984(n+1)/2. (End)
a(n) = Sum_{k=2..n} A143359(n,k). [Callan's 2004 comment]. - R. J. Mathar, Sep 24 2021
From Amiram Eldar, Sep 27 2024: (Start)
Sum_{n>=1} 1/a(n) = 1 + Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = (3 - Pi/sqrt(3))/9. (End)
Comments