cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 118 results. Next

A095013 Number of 8k+-1 primes (A001132) in range [2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 0, 3, 2, 8, 10, 22, 35, 67, 126, 233, 438, 793, 1525, 2825, 5391, 10192, 19332, 36739, 70163, 133983, 256877, 492962, 946938, 1822776, 3513544, 6780795, 13102754, 25349101, 49090527, 95168113, 184659769, 358635803, 697092152, 1356042601, 2639892053, 5142809798
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095014(n) = A095009(n) + A095012(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A095014 Number of 8k+-3 primes (A003629) in range [2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 21, 40, 70, 129, 231, 434, 819, 1505, 2884, 5358, 10198, 19303, 36847, 70173, 134233, 256831, 492856, 947182, 1822968, 3513746, 6781112, 13104524, 25348436, 49092129, 95167472, 184663536, 358631365, 697100084, 1356061232, 2639871771, 5142831980
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095013(n) = A095010(n) + A095011(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A095334 Number of A095314-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 0, 3, 3, 5, 4, 21, 32, 69, 96, 229, 335, 768, 1116, 2860, 4371, 10252, 15490, 36563, 58041, 133739, 209875, 491193, 795599, 1816561, 2951789, 6772098, 11144763, 25284670, 41781268, 94895078, 158643268
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 0, 0.5, 0, 0.6, 0.428571, 0.384615, 0.173913, 0.488372, 0.426667, 0.50365, 0.376471, 0.493534, 0.384174, 0.476427, 0.368317, 0.500963, 0.406642, 0.502795, 0.400932, 0.496874, 0.413586, 0.498624, 0.408549, 0.498259, 0.420036, 0.498269, 0.420047, 0.499347, 0.425255, 0.498736, 0.425546, 0.498567, 0.429551
Ratios a(n)/A095297(n) converge as: 1, 1, 1, 1.5, 1.5, 0.625, 0.571429, 0.954545, 1.185185, 1.014706, 1.2, 0.974468, 0.976676, 0.909953, 0.945763, 1.003861, 0.977197, 1.011245, 1.006694, 0.987575, 0.988538, 0.994512, 0.983496, 0.993061, 0.991634, 0.9931, 0.995506, 0.997392, 0.996345, 0.994955, 0.993649, 0.994285, 0.995042

Crossrefs

a(n) = A036378(n)-A095335(n). Cf. A095298.

A095742 Sum of A037888(p) for all primes p such that 2^n < p < 2^(n+1).

Original entry on oeis.org

0, 0, 2, 3, 9, 16, 35, 69, 148, 271, 628, 1167, 2629, 4830, 10597, 20083, 42928, 81579, 174223, 331314, 701382, 1340756, 2825575, 5422454, 11361615, 21873923, 45673361, 88161666, 183458213, 354899159, 736343490, 1427495050, 2954560104
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

Ratio a(n)/A036378(n) gives the average asymmetricity ratio for n-bit primes: 0, 0, 1, 0.6, 1.285714, 1.230769, 1.521739, 1.604651, 1.973333, 1.978102, 2.462745, 2.515086, 3.014908, 2.996278, 3.49736, 3.517779, 3.993674, 4.000932, 4.50946, 4.502405, 4.997877, 4.998792, 5.500352, 5.500462, 5.998361, 5.999852, 6.499427, 6.500684, 7.000277, 7.000323, 7.499731, 7.499885, 7.999929, etc. I.e. 2- and 3-bit odd primes are all palindromes, 4-bit primes need on average just a one-bit flip to become palindromes, etc.
Ratio (a(n)/A036378(n))/f(n), where f(n) is (n-1)/4 if n is odd and (n-2)/4 if n is even (i.e. it gives the expected asymmetricity for all odd numbers in range [2^n,2^(n+1)]) converges as follows: 1, 1, 2, 1.2, 1.285714, 1.230769, 1.014493, 1.069767, 0.986667, 0.989051, 0.985098, 1.006034, 1.004969, 0.998759, 0.999246, 1.00508, 0.998418, 1.000233, 1.002102, 1.000535, 0.999575, 0.999758, 1.000064, 1.000084, 0.999727, 0.999975, 0.999912, 1.000105, 1.00004, 1.000046, 0.999964, 0.999985, 0.999991, ...

Examples

			a(1)=0, as only prime in range ]2,4] is 3, which has palindromic binary expansion 11, i.e. A037888(3)=0. a(2)=0, as in range ]4,8] there are two primes 5 (101 in binary) and 7 (111 in binary) so A037888(5) + A037888(7) = 0. a(3)=2, as in range ]8,16] there are two primes, 11 (1011 in binary) and 13 (1101 in binary), thus A037888(11) + A037888(13) = 1+1 = 2.
		

Crossrefs

Cf. A095298, A095732 (sums of similar asymmetricity measures for Zeckendorf-expansion), A095753.

A095753 Number of almost base-2 palindromic primes (A095743) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 2, 3, 5, 4, 15, 18, 32, 33, 63, 81, 119, 144, 256, 318, 527, 640, 1029, 1281, 2236, 2566, 4273, 5410, 8261, 10610, 16868, 21084, 33943, 43104, 68218, 88493, 136343
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

Ratio a(n)/A036378(n) converges as follows: 0, 0, 1, 0.6, 0.714286, 0.307692, 0.652174, 0.418605, 0.426667, 0.240876, 0.247059, 0.174569, 0.136468, 0.08933, 0.084488, 0.055702, 0.049028, 0.031388, 0.026634, 0.017408, 0.015933, 0.009567, 0.008318, 0.005488, 0.004361, 0.00291, 0.0024, 0.001555, 0.001295, 0.00085, 0.000695, 0.000465, 0.000369
Ratio a(n)/A095758(n) converges as follows: 1, 1, 0, 1.5, 1, 1, 3.75, 1.2, 2, 1.375, 1.909091, 1.446429, 1.652778, 1.515789, 1.718121, 1.452055, 1.636646, 1.191806, 1.570992, 1.283567, 1.708174, 1.380312, 1.534842, 1.392177, 1.547004, 1.311334, 1.573801, 1.302205, 1.521016, 1.419202, 1.570938, 1.389237, 1.546084

Crossrefs

The second diagonal of triangle A095759. Cf. A095742.

A095757 Number of A095747-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 4, 7, 7, 10, 9, 26, 20, 43, 27, 74, 41, 112, 93, 181, 167, 495, 274, 796, 558, 1232, 935, 2602, 1512, 5164, 3275, 8689, 6309
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

Ratio a(n)/A036378(n) converges as follows: 1, 1, 1, 0.6, 0.285714, 0.461538, 0.173913, 0.162791, 0.093333, 0.072993, 0.035294, 0.056034, 0.022936, 0.026675, 0.008911, 0.012962, 0.003814, 0.005493, 0.002407, 0.00246, 0.00119, 0.001846, 0.000533, 0.000807, 0.000295, 0.000338, 0.000133, 0.000192, 0.000058, 0.000102, 0.000033, 0.000046, 0.000017

Crossrefs

The last nonzero terms from each row of triangle A095759. Bisection: A095760.

A095766 Number of primes whose binary expansion begins '11' (A080166) in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 11, 21, 37, 67, 125, 227, 431, 787, 1491, 2812, 5296, 10055, 19079, 36343, 69398, 132661, 254122, 488028, 937994, 1806147, 3482463, 6722625, 12994889, 25145151, 48709705, 94451647, 183312229, 356089665, 692285717
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

I.e. number of primes p such that (2^n + 2^(n-1)) < p < 2^(n+1).
Ratio a(n)/A036378(n) converges as follows: 1, 0.5, 0.5, 0.4, 0.428571, 0.538462, 0.478261, 0.488372, 0.493333, 0.489051, 0.490196, 0.489224, 0.494266, 0.488213, 0.492079, 0.492556, 0.492697, 0.493134, 0.493827, 0.493885, 0.494513, 0.494605, 0.494682, 0.495049, 0.495214, 0.495412, 0.495563, 0.495699, 0.49585, 0.495984, 0.496113, 0.496237, 0.496346

Crossrefs

a(n) = A036378(n)-A095765(n).

Programs

Extensions

a(34) and a(35) from Robert G. Wilson v, Jan 24 2006

A190502 Number of Ramanujan primes <= 2^n.

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 7, 13, 23, 42, 75, 137, 255, 463, 872, 1612, 3030, 5706, 10749, 20387, 38635, 73584, 140336, 268216, 513705, 985818, 1894120, 3645744, 7027290, 13561906, 26207278, 50697533, 98182656, 190335585, 369323301, 717267167, 1394192236, 2712103833
Offset: 0

Views

Author

John W. Nicholson, May 11 2011

Keywords

Crossrefs

Programs

  • PARI
    \\ With RR[.] is a list of A104272(.). The output of this program is n, a(n), and RR[a(n)].
    j=0; while(2^jJohn W. Nicholson, Dec 01 2012
    
  • Perl
    use ntheory ":all"; sub a190502 { scalar(@{ramanujan_primes(1 << shift)}) } say a190502($) for 0..20; # _Dana Jacobsen, Dec 19 2015
    
  • Perl
    use ntheory ":all"; my $t = 0; for my $e (1..32) { $t += scalar(@{ramanujan_primes(2**($e-1)+1,2**$e)}); say "$e $t" } # Dana Jacobsen, Dec 19 2015
    
  • Perl
    use ntheory ":all"; say ramanujan_prime_count(2**$) for 0..47; # _Dana Jacobsen, Jan 03 2016

Extensions

Extended by T. D. Noe, May 11 2011
Extended to n = 32 by John W. Nicholson, Dec 01 2012
a(33)-a(41) from Dana Jacobsen, Dec 19 2015

A293696 Irregular triangle read by rows in which row n lists the partial sums of prime numbers between 2^n+1 and 2^(n+1).

Original entry on oeis.org

2, 3, 5, 12, 11, 24, 17, 36, 59, 88, 119, 37, 78, 121, 168, 221, 280, 341, 67, 138, 211, 290, 373, 462, 559, 660, 763, 870, 979, 1092, 1219, 131, 268, 407, 556, 707, 864, 1027, 1194, 1367, 1546, 1727, 1918, 2111, 2308, 2507, 2718, 2941, 3168, 3397, 3630, 3869, 4110, 4361
Offset: 0

Views

Author

Olivier Gérard, Oct 15 2017

Keywords

Examples

			The triangle begins
.
2
3
5,12
11,24
17,36,59,88,119
37,78,121,168,221,280,341
67,138,211,290,373,462,559,660,763,870,979,1092,1219
		

Crossrefs

Cf. A000040, A036378 (length of rows), A293697 (sequence of last item of each row).

Programs

  • Mathematica
    Flatten@Table[
      Rest@FoldList[Plus, 0,
        Table[Prime[i], {i, PrimePi[2^(n)] + 1, PrimePi[2^(n + 1)]}]], {n,
        0, 8}]
    Table[Accumulate[Prime[Range[PrimePi[2^n]+1,PrimePi[2^(n+1)]]]],{n,0,10}] // Flatten (* Harvey P. Dale, Dec 26 2020 *)

A309359 Median of the primes p with 2^(n-1) < p < 2^n.

Original entry on oeis.org

6, 12, 23, 47, 97, 191, 383, 761, 1523, 3049, 6107, 12252, 24376, 48877, 97777, 195659, 391623, 783257, 1566386, 3133974, 6269116, 12538053, 25082361, 50170976, 100353498, 200730129, 401498897, 803081460, 1606292647, 3212862108
Offset: 3

Views

Author

Hugo Pfoertner, Jul 25 2019

Keywords

Comments

For n >= 3, median of the primes with n binary digits. The median of an even number of values is assumed to be defined as the arithmetic mean of the two central elements in their sorted list. The special case of the primes with two binary digits {2, 3} is excluded, because their median would be 5/2.

Examples

			a(3) = 6: 2^2 < {5, 7} < 2^3, (5 + 7)/2 = 6.
a(4) = 12: 2^3 < {11, 13} < 2^4, (11 + 13)/2 = 12
a(5) = 23: 2^4 < {17, 19, 23, 29, 31} < 2^5, median = 23.
		

Crossrefs

Previous Showing 41-50 of 118 results. Next