cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A111687 Comprimorial(n): the product of the first n primes and the first n composite numbers.

Original entry on oeis.org

8, 144, 5760, 362880, 39916800, 6227020800, 1482030950400, 422378820864000, 155435406077952000, 81137281972690944000, 50305114823068385280000, 39087074217524135362560000, 35256540944206770097029120000
Offset: 1

Views

Author

Amarnath Murthy, Aug 17 2005

Keywords

Examples

			a(1) = 2*4 = 8, a(2) = (2*3)*(4*6)=144.
		

Crossrefs

Cf. A002110 (primorials), A036691 (compositorials).

Programs

  • Mathematica
    Module[{nn=50,prs,coms,len},prs=Select[Range[nn],PrimeQ];coms=Complement[ Range[4,nn],prs];len=Min[Length[prs],Length[coms]];Rest[FoldList[ Times, 1, Times@@@Thread[{Take[prs,len],Take[coms,len]}]]]] (* Harvey P. Dale, Jan 11 2014 *)

Formula

a(n) = A002110(n)*A036691(n) for n>=1. - Rick L. Shepherd, Aug 20 2005

Extensions

Corrected and extended by Rick L. Shepherd, Aug 20 2005

A075070 a(n) = n-th compositorial number / (product of those primes which divide the n-th compositorial number).

Original entry on oeis.org

1, 2, 4, 32, 288, 576, 6912, 13824, 207360, 3317760, 59719680, 1194393600, 25082265600, 50164531200, 1203948748800, 30098718720000, 60197437440000, 1625330810880000, 45509262704640000, 1365277881139200000
Offset: 0

Views

Author

Amarnath Murthy, Sep 08 2002

Keywords

Comments

Smallest integer of the form 'Product of first n composite number/ product of first k primes'.
Divide Compositorial(n) by Primorial(k) choosing k to give the smallest integer. (k+1)-th prime does not divide a(n).

Examples

			a(0) = 1, a(5) = (4*6*8*9*10)/(2*3*5) = 576, 10 is the fifth composite number.
		

Crossrefs

Cf. A002808.

Programs

  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; Table[ Product[ Composite[i], {i, 1, n}]/ Times @@ PrimeFactors[ Product[ Composite[i], {i, 1, n}]], {n, 0, 20}]

Formula

A036691/(prime factors of A036691)

Extensions

Edited and extended by Robert G. Wilson v, Jul 15 2003
Further edited by N. J. A. Sloane, Sep 13 2008 at the suggestion of R. J. Mathar

A195529 Ultracompositorial: Compositorials raised to the power of themselves.

Original entry on oeis.org

1, 256, 1333735776850284124449081472843776
Offset: 0

Views

Author

Kausthub Gudipati, Sep 21 2011

Keywords

Comments

Next term (192^192) has 439 digits.

Crossrefs

Programs

Formula

a(n) = A000312(A036691(n)). - Amiram Eldar, Jul 20 2025
a(2) = A114993(2). - R. J. Mathar, Aug 22 2025

Extensions

a(2) corrected by Franklin T. Adams-Watters, Sep 21 2011

A132996 a(n) = gcd(Sum_{k=1..n} c(k), Product_{j=1..n} c(j)), where c(k) is the k-th composite.

Original entry on oeis.org

4, 2, 6, 27, 1, 1, 63, 6, 2, 112, 12, 9, 175, 1, 224, 250, 1, 5, 5, 1, 400, 14, 7, 5, 3, 6, 2, 8, 12, 3, 17, 847, 896, 22, 1, 1, 1, 6, 2, 1, 3, 3, 1, 2, 6, 31, 1, 1, 26, 4, 28, 2, 1, 1, 10, 2368, 2448, 9, 7, 2695, 20, 2, 1, 1, 31, 18, 2, 1, 9, 3596, 52, 10, 1, 1, 1, 5, 4300, 2, 74, 4624
Offset: 1

Views

Author

Leroy Quet, Nov 22 2007

Keywords

Examples

			The first 8 composites are 4,6,8,9,10,12,14,15. 4+6+8+9+10+12+14+15 = 78 = 2*3*13. So a(8) = gcd(2*3*13, 4*6*8*9*10*12*14*15) = 6.
		

Crossrefs

Programs

  • Mathematica
    lim=80;c[n_]:=n-PrimePi[n]-1;i=0;Do[Until[c[i]==m,i++];Cmp[m]=i,{m,lim}];Table[GCD[Sum[Cmp[k],{k,n}],Product[Cmp[j],{j,n}]],{n,lim}] (* James C. McMahon, Mar 09 2025 *)

Extensions

More terms from R. J. Mathar, Jan 13 2008

A141278 Clusters of consecutive composites in A141089.

Original entry on oeis.org

25, 26, 48, 49, 114, 115, 123, 124, 212, 213, 287, 288, 332, 333, 342, 343, 398, 399, 415, 416, 440, 441, 446, 447, 470, 471, 488, 489, 510, 511, 512, 548, 549, 553, 554, 603, 604, 638, 639, 640, 648, 649, 675, 676, 771, 772, 785, 786, 818, 819, 836, 837
Offset: 1

Views

Author

Enoch Haga, Jun 21 2008

Keywords

Comments

A141089 contains composites A002808(k) such that the partial sum A053767(k) divides the partial product A036691(k). The sequence contains the subsequences of A141089 that contain two or more consecutive integers.

Examples

			The first pair of consecutive integers is (25,26) in A141089(6,7), the second (48,49) in A141089(9,10).
Triples of consecutive integers in A141089 are (510,511,512), (638,639,640), (889,890,891), (912,913,914), quadruples are (987,988,989,990), etc, all members included here.
		

Crossrefs

Formula

Numbers A141089(i) such that either 1+A141089(i) = A141089(i+1) or A141089(i)-1 = A141089(i-1) or both.

Extensions

Edited by R. J. Mathar, Jul 08 2008

A255383 Compositorial mod sum-of-composites.

Original entry on oeis.org

0, 4, 12, 0, 1, 41, 0, 72, 2, 0, 48, 126, 0, 20, 0, 0, 90, 95, 115, 4, 0, 140, 161, 90, 261, 138, 208, 512, 72, 420, 51, 0, 0, 924, 899, 29, 893, 72, 840, 727, 129, 1185, 194, 732, 1080, 1612, 566, 175, 1352, 1192, 1204, 1360, 428, 957, 2170, 0, 0, 513, 2240
Offset: 1

Views

Author

Walter Carlini, May 14 2015

Keywords

Examples

			For n = 5, a(5) = (4*6*8*9*10) mod (4+6+8+9+10) = 17280 mod 37 = 1.
		

Crossrefs

Programs

  • Mathematica
    comp=Select[Range[2,83],!PrimeQ[#]&];Mod[Rest[FoldList[Times,1,comp]],Accumulate[comp]] (* Ivan N. Ianakiev, May 22 2015 *)

Formula

a(n) = A036691(n) mod A053767(n).

Extensions

More terms from Alois P. Heinz, May 21 2015

A277005 Least prime greater than n-th compositorial.

Original entry on oeis.org

2, 5, 29, 193, 1733, 17291, 207367, 2903041, 43545611, 696729629, 12541132817, 250822656001, 5267275776047, 115880067072017, 2781121609728037, 69528040243200079, 1807729046323200001, 48808684250726400031, 1366643159020339200397
Offset: 0

Views

Author

Walter Carlini, Sep 25 2016

Keywords

Examples

			a(0) = A151800(A036691(0)) = A151800(1) = 2; where the zeroth compositorial, A036691(0), is the empty product = 1.
a(3) = 193, which is the least prime number greater than the third compositorial number, 192 = 4 * 6 * 8.
		

Crossrefs

Programs

  • Mathematica
    findComp[n_] := FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1] ; Table[NextPrime@ Product[findComp@ k, {k, n}], {n, 0, 18}] (* Michael De Vlieger, Sep 25 2016, after Robert G. Wilson v at A036691 *)

Formula

a(n) = A151800(A036691(n)). - Michel Marcus, Sep 25 2016

Extensions

a(18) corrected by Sean A. Irvine, Sep 26 2023

A306848 Product of first n odd nonprimes, a(n) = Product_{k=1..n} A071904(k).

Original entry on oeis.org

1, 9, 135, 2835, 70875, 1913625, 63149625, 2210236875, 86199238125, 3878965715625, 190069320065625, 9693535323346875, 533144442784078125, 30389233238692453125, 1914521694037624546875, 124443910112445595546875, 8586629797758746092734375
Offset: 0

Views

Author

Zhandos Mambetaliyev, Mar 13 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn = 70}, FoldList[Times, Complement[Range[1, nn, 2], Prime@ Range[2, PrimePi@ nn]]]] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    lista(nn) = {my(p=1); print1(p, ", "); forcomposite (n=1, nn, if (n%2, p *= n; print1(p, ", ")); ); } \\ Michel Marcus, Mar 13 2019

A371030 n written in compositorial base.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 42, 43, 50, 51, 52, 53, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 140, 141, 142, 143, 150, 151, 152, 153, 200, 201, 202, 203, 210, 211, 212, 213
Offset: 0

Views

Author

James C. McMahon, Mar 08 2024

Keywords

Comments

Compositorial base is a mixed-radix representation using the composite numbers (A002808) from least to most significant.
Places reading from right have values (1, 4, 24, 192, ...) = compositorial numbers (A036691).
a(n) = concatenation of decimal digits of n in compositorial base. This concatenated representation is unsatisfactory for large n (above 172799), when coefficients of 10 or greater start to appear.

Examples

			a(35)=123; 35 = 1*24 + 2*4 + 3*1.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ IntegerDigits[n,MixedRadix[Reverse@ ResourceFunction["Composite"]@ Range@ 8]], {n, 0,55}]

A380318 Product of the first n perfect powers (A001597).

Original entry on oeis.org

1, 1, 4, 32, 288, 4608, 115200, 3110400, 99532800, 3583180800, 175575859200, 11236854988800, 910185254092800, 91018525409280000, 11013241574522880000, 1376655196815360000000, 176211865192366080000000, 25374508587700715520000000, 4288291951321420922880000000, 840505222458998500884480000000, 181549128051143676191047680000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},FoldList[Times,Join[{1},Select[Range[250],GCD@@FactorInteger[#][[All,2]]>1&]]]] (* Harvey P. Dale, May 03 2025 *)
Previous Showing 21-30 of 30 results.