A135920
O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - k^2*x).
Original entry on oeis.org
1, 1, 2, 7, 37, 264, 2433, 27913, 386906, 6346119, 121159373, 2655174768, 66028903633, 1845579100993, 57506847262162, 1983312152411351, 75238783332550789, 3122408658986242072, 141063757638078429489
Offset: 0
O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-4x)) + x^3/((1-x)*(1-4x)*(1-9x)) + x^4/((1-x)*(1-4x)*(1-9x)*(1-16x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,7,37,264,2433,27913,...] = BINOMIAL([1,1,4,21,151,1422,16629,..]);
[1,4,21,151,1422,16629,234529,...] = BINOMIAL^3([1,1,6,43,393,4596,...]);
[1,6,43,393,4596,66049,1125905,...] = BINOMIAL^5([1,1,8,73,811,11274,...]);
[1,8,73,811,11274,191685,...] = BINOMIAL^7([1,1,10,111,1453,23328,...]);
[1,10,111,1453,23328,456033,...] = BINOMIAL^9([1,1,12,157,2367,43014,...]);
etc.
-
nmax = 20;
A[x_] = Sum[x^n/Product[1 - k^2 x, {k, 0, n}], {n, 0, nmax}];
CoefficientList[A[x] + O[x]^nmax, x] (* Jean-François Alcover, Jul 27 2018 *)
-
a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-j^2*x+x*O(x^n))), n)
A351105
a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} (i*j*k)^2.
Original entry on oeis.org
0, 1, 85, 1408, 11440, 61490, 251498, 846260, 2458676, 6369275, 15047175, 32955780, 67746900, 131969604, 245444980, 438485080, 756163672, 1263878005, 2054474617, 3257248280, 5049161480, 7668672374, 11432601950, 16756516140, 24179145900, 34391417775
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums, Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
CoefficientList[Series[x (36 x^5 + 460 x^4 + 1065 x^3 + 603 x^2 + 75 x + 1)/(x - 1)^10, {x, 0, 25}], x] (* Michael De Vlieger, Feb 04 2022 *)
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,85,1408,11440,61490,251498,846260,2458676,6369275},30] (* Harvey P. Dale, Jul 18 2022 *)
-
{a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+1)*(2*n+3)*(2*n+5)*(35*n^2-21*n+4)/45360};
-
a(n) = sum(i=1, n, sum(j=1, i, sum(k=1, j, i^2*j^2*k^2)));
-
def A351105(n): return n*(n*(n*(n*(n*(n*(n*(n*(280*n + 2772) + 10518) + 18711) + 14385) + 1323) - 2863) - 126) + 360)//45360 # Chai Wah Wu, Feb 17 2022
A303675
Triangle read by rows: coefficients in the sum of odd powers as expressed by Faulhaber's theorem, T(n, k) for n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 6, 1, 120, 30, 1, 5040, 1680, 126, 1, 362880, 151200, 17640, 510, 1, 39916800, 19958400, 3160080, 168960, 2046, 1, 6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1, 1307674368000, 871782912000, 210680870400, 22313491200, 988107120, 14217840, 32766, 1
Offset: 1
The triangle begins (see the Knuth reference p. 10):
1;
6, 1;
120, 30, 1;
5040, 1680, 126, 1;
362880, 151200, 17640, 510, 1;
39916800, 19958400, 3160080, 168960, 2046, 1;
6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1;
.
Let S(n, m) = Sum_{j=1..n} j^m. Faulhaber's formula gives for m = 7 (m odd!):
F(n, 7) = 5040*C(n+4, 8) + 1680*C(n+3, 6) + 126*C(n+2, 4) + C(n+1, 2).
Faulhaber's theorem asserts that for all n >= 1 S(n, 7) = F(n, 7).
If n = 43 the common value is 1600620805036.
- John H. Conway and Richard Guy, The Book of Numbers, Springer (1996), p. 107.
First column is a bisection of
A000142, second column is a bisection of
A001720.
-
T := proc(n,k) local m; m := n-k;
2*(2*m+1)!*add((-1)^(j+m)*(j+1)^(2*n)/((j+m+2)!*(m-j)!), j=0..m) end:
seq(seq(T(n, k), k=1..n), n=1..8); # Peter Luschny, May 09 2018
-
(* After Peter Luschny's above formula. *)
T[n_, k_] := (1/(n-k+1))*Sum[(-1)^j*Binomial[2*(n-k+1), j]*((n-k+1) - j)^(2*n), {j, 0, n-k+1}]; Column[Table[T[n, k], {n, 1, 10}, {k, 1, n}], Center]
-
def A303675(n, k): return factorial(2*(n-k)+1)*A008957(n, k)
for n in (1..7): print([A303675(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
A268434
Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 10, 10, 1]
[0, 100, 140, 28, 1]
[0, 1700, 2900, 840, 60, 1]
[0, 44200, 85800, 31460, 3300, 110, 1]
[0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1]
-
T := proc(n,k) option remember;
if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
seq(seq(T(n,k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
(n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
-
#cached_function
def T(n, k):
if n==k: return 1
if k<0 or k>n: return 0
return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
for n in range(8): print([T(n, k) for k in (0..n)])
# Alternatively with the function PtransMatrix (cf. A269941):
PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))
A348081
a(n) = [x^n] Product_{k=1..2*n} 1/(1 - k^2 * x).
Original entry on oeis.org
1, 5, 627, 251498, 209609235, 298201326150, 646748606934510, 1986821811445598260, 8209989926930833199235, 43919039258570117113742270, 295300365118450495520630242042, 2437724587984574697761809904387340, 24239364659088896670563082403144467630
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
-
a(n) = polcoef(1/prod(k=1, 2*n, 1-k^2*x+x*O(x^n)), n);
A370705
Triangle read by rows: T(n, k) = numerator(CF(n, k)) where CF(n, k) = n! * [x^k] [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x).
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 9, 0, -5, 0, 1, 0, 0, 4, 0, -5, 0, 1, 0, -225, 0, 259, 0, -35, 0, 1, 0, 0, -36, 0, 49, 0, -14, 0, 1, 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1, 0, 0, 576, 0, -820, 0, 273, 0, -30, 0, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, -1, 0, 1;
[4] 0, 0, -1, 0, 1;
[5] 0, 9, 0, -5, 0, 1;
[6] 0, 0, 4, 0, -5, 0, 1;
[7] 0, -225, 0, 259, 0, -35, 0, 1;
[8] 0, 0, -36, 0, 49, 0, -14, 0, 1;
[9] 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1;
- Johan Frederik Steffensen, On a class of quadrature formulae. Proceedings of the International Mathematical Congress Toronto 1924, Vol 2, pp. 837-844.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- Leonard Carlitz and John Riordan, The Divided Central Differences of Zero, Canadian Journal of Mathematics, Volume 15, 1963, pp. 94-100.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Johan Frederik Steffensen, On the Definition of the Central Factorial, Journal of the Institute of Actuaries, Volume 64, Issue 2, July 1933, pp. 165-168.
See the discussion by Sloane in
A008955 of Riordan's notation. In particular, the notation 'T' below does not refer to the present triangle.
Central factorials (rational, general case): (this triangle) /
A370703;
t(2n, 2k) (first kind, 'even case')
A204579; (signed, T(n, 0) missing)
|t(2n, 2k)|
A269944; (unsigned, T(n, 0) = 0^n)
-
gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20):
ct := n -> n!*coeff(ser, t, n):
T := (n, k) -> numer(coeff(ct(n), x, k)):
seq(seq(T(n, k), k = 0..n), n = 0..10);
# Filtering the central factorials of the first resp. second kind:
CF1 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=0..n, 2)), n = 0..len, 2);
CF2 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=1..n, 2)), n = 1..len, 2);
Comments