cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A379007 a(n) = (n^2) XOR ((n^2)-1).

Original entry on oeis.org

1, 7, 1, 31, 1, 7, 1, 127, 1, 7, 1, 31, 1, 7, 1, 511, 1, 7, 1, 31, 1, 7, 1, 127, 1, 7, 1, 31, 1, 7, 1, 2047, 1, 7, 1, 31, 1, 7, 1, 127, 1, 7, 1, 31, 1, 7, 1, 511, 1, 7, 1, 31, 1, 7, 1, 127, 1, 7, 1, 31, 1, 7, 1, 8191, 1, 7, 1, 31, 1, 7, 1, 127, 1, 7, 1, 31, 1, 7, 1, 511, 1, 7, 1, 31, 1, 7, 1, 127, 1, 7, 1, 31, 1, 7, 1, 2047
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Map[BitXor[#, # - 1] &, Range[100]^2] (* Paolo Xausa, Dec 18 2024 *)
  • PARI
    A379007(n) = bitxor(n^2, ((n^2)-1));
    
  • Python
    def A379007(n): return (m:=n**2)^m-1 # Chai Wah Wu, Dec 17 2024

Formula

Multiplicative with a(p^e) = 2^(1+2*e)-1 if p = 2; 1 if p > 2.
a(n) = A038712(A000290(n)).
a(n) = A000225(A037227(n)) = (2^(1+2*A007814(n))) - 1.
Dirichlet g.f.: zeta(s) * (2^s + 2)/(2^s - 4). - Amiram Eldar, Jan 12 2025

A059137 A hierarchical sequence (W3{2,2}cc - see A059126).

Original entry on oeis.org

18, 54, 18, 90, 18, 54, 18, 126, 18, 54, 18, 90, 18, 54, 18, 162, 18, 54, 18, 90, 18, 54, 18, 126, 18, 54, 18, 90, 18, 54, 18, 198, 18, 54, 18, 90, 18, 54, 18, 126, 18, 54, 18, 90, 18, 54, 18, 162, 18, 54, 18, 90, 18, 54, 18, 126, 18, 54, 18, 90, 18, 54, 18, 234, 18, 54
Offset: 0

Views

Author

Jonas Wallgren, Jan 19 2001

Keywords

Crossrefs

Formula

a(n) = 18*A037227(n). - Mitch Harris, Jun 29 2005
a(n) = A059136(3*n) + A059136(3*n+1) + A059136(3*n+2). - Sean A. Irvine, Sep 13 2022

A262009 Sum_{d|n} 2^(d^2) * n^2/d^2.

Original entry on oeis.org

2, 24, 530, 65632, 33554482, 68719479000, 562949953421410, 18446744073709814144, 2417851639229258349417122, 1267650600228229401496837423704, 2658455991569831745807614120560689394, 22300745198530623141535718272648636384486240, 748288838313422294120286634350736906063837462004050
Offset: 1

Views

Author

Paul D. Hanna, Oct 01 2015

Keywords

Comments

Logarithmic derivative of A262008.

Examples

			L.g.f.: L(x) = 2*x + 24*x^2/2 + 530*x^3/3 + 65632*x^4/4 + 33554482*x^5/5 + 68719479000*x^6/6 + 562949953421410*x^7/7 + ...
where
exp(L(x)) = 1 + 2*x + 14*x^2 + 202*x^3 + 16858*x^4 + 6746346*x^5 + 11466918526*x^6 + ... + A262008(n)*x^n + ...
		

Crossrefs

Cf. A262008 (exp), A037227.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(#^2) * (n/#)^2 &]; Array[a, 13] (* Amiram Eldar, Aug 24 2023 *)
  • PARI
    {a(n) = sumdiv(n,d, 2^(d^2) * n^2/d^2)}
    for(n=1,20,print1(a(n),", "))

Formula

a(n) = Sum_{d|n} 2^(n^2/d^2) * d^2.
a(2*n) == 0 (mod 8), a(2*n-1) == 2 (mod 8).
Conjecture: A037227(a(n)) = 2*A037227(n) + 1.
Conjecture: a(n) = 2^A037227(n) * d for some odd d, where A037227(n) = 2*m + 1 such that n = 2^m * k for some odd k.

A333363 Horizontal visibility sequence at the onset of chaos in the 3-period cascade.

Original entry on oeis.org

3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 11, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 13, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 11, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 9, 3, 2, 5, 3, 2, 7, 3, 2, 5, 3, 2, 15
Offset: 1

Views

Author

Keywords

Comments

This sequence represents the horizontal visibility of the points of the chaotic time series at the onset of chaos in the 3-period cascade of the logistic (unimodal) map.
Observation: if the sequence is written as a table array with six columns read by rows we have that, at least for the first 16 rows, the n-th row is "3, 2, 5, 3, 2" together with (6 + A037227(n)), see the example. - Omar E. Pol, Mar 16 2020

Examples

			From _Omar E. Pol_, Mar 16 2020: (Start)
Written as a table with six columns read by rows:
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 11;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 13;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 11;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2,  9;
  3, 2, 5, 3, 2,  7;
  3, 2, 5, 3, 2, 15;
(End)
		

Crossrefs

Programs

  • Mathematica
    L[n_] := L[n] = Block[{s = {3, 2, 2*n+3}}, Do[s = Join[L[i], s], {i, n-1}]; s]; L[6] (* Giovanni Resta, Mar 16 2020 *)
  • R
    visibsuc3 <- function(n){
        suc <- c(3,2, 2*(n+1)+1)
        if(n>1){
        for(i in 1:(n-1)){
        suc <- c(visibsuc3(i), suc)
        }
       }
       return(suc)
      }

Formula

Conjectured: a(n) = 2*A007814(n/3) + 5 if 3|n and a(n) = 4 - (n mod 3) otherwise. - Giovanni Resta, Mar 16 2020
Previous Showing 11-14 of 14 results.