cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 93 results. Next

A339046 Irregular triangle read by rows: row n gives the complete quadrupling system modulo N = 2*n + 1, for n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 3, 1, 4, 2, 3, 5, 6, 1, 4, 7, 2, 8, 5, 1, 4, 5, 9, 3, 2, 8, 10, 7, 6, 1, 4, 3, 12, 9, 10, 2, 8, 6, 11, 5, 7, 1, 4, 2, 8, 7, 13, 11, 14, 1, 4, 16, 13, 2, 8, 15, 9, 3, 12, 14, 5, 6, 7, 11, 10, 1, 4, 16, 2, 8, 11, 5, 20, 17, 10, 19, 13, 1, 4, 16, 18, 3, 12, 2, 8, 9, 13, 6, 2, 8, 9, 13, 6, 1, 4, 16, 18, 3, 12
Offset: 0

Views

Author

Wolfdieter Lang, Dec 13 2020

Keywords

Comments

The length of row n is given by phi(2*n + 1), with phi = A000010, for n >= 0.
The quadrupling sequence modulo N = 2*n + 1, for n >= 0, has entries QS(N, s(N,i), j) = s(N,i)*4^j (mod N), with j >= 0, and certain positive integer seeds s(N, i), for i = 1, 2, ..., S(N) = A339049((N-1)/2), where gcd(s(N, i), N) = 1 (restricted seeds modulo N). These quadrupling sequences are periodic with period length P(N) = A053447((N-1)/2) (order of 4 modulo N). Only the periods (cycles) QS(N, s(N,i)) = {QS(N, s(N, i), j)}_{j=0..P(N)-1}, for i = 1, 2, ..., S(N), are listed.
N = 1 (n = 0) is special: one takes here the restricted residue system modulo N not as [0] but as [1]. The order of 4 modulo 1 is 1, because 4^1 == 1 (mod 1) (== 0 (mod 1)).
In order to obtain the complete system of quadrupling sequences one starts with seed s(N, 1) = 1, and if all numbers from the smallest positive reduced residue system modulo N (called RRS(N), given in row N of A038566) are obtained, i.e., if P(N) = #RRS(N) = phi(N) = A000010(N), then the system is complete. Otherwise the smallest missing number from RRS(N) is taken as new seed s(N, 2), etc. until the system is complete. This means that the number of seeds needed is S(N) given above.
This entry generalizes A337712, given together with Gary W. Adamson. See also A337936.

Examples

			The irregular triangle begins (the vertical bar separates the cycles):
n,  N \ k  1 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...
0,  1:     1
1,  3:     1|2
2,  5:     1 4| 2  3
3,  7:     1 4  2| 3  5  6
4,  9:     1 4  7| 2  8  5
5,  11:    1 4  5  9  3| 2  8 10  7  6
6,  13:    1 4  3 12  9 10| 2  8  6 11  5  7
7,  15:    1 4| 2  8| 7 13|11 14
8,  17:    1 4 16 13| 2  8 15  9| 3 12 14  5| 6  7 11 10
9,  19:    1 4 16  7  9 17 11  6  5| 2  8 13 14 18 15  3 12 10
10, 21:    1 4 16| 2  8 11| 5 20 17|10 19 13
11, 23:    1 4 16 18  3 12  2  8  9 13  6| 2  8  9 13  6  1  4 16 18  3 12
12, 25:    1 4 16 14  6 24 21  9 11 19| 2  8  7  3 12 23 17 18 22 13
13, 27:    1 4 16 10 13 25 19 22  7| 2  8  5 20 26 23 11 17 14
...
n = 14, N = 29: 1 4 16 6 24 9 7 28 25 13 23 5 20 22 | 2 8 3 12 19 18 14 27 21 26 17 10 11 15,
n = 15, N = 31: 1 4 16 2 8 | 3 12 17 6 24 | 5 20 18 10 9 | 7 28 19 14 25 | 11 13 21 22 26 | 15 29 23 30 27.
...
		

Crossrefs

Cf. A000010, A053447, A337712 (doubling), A337936 (tripling), A339049.

Formula

T(n, k) gives the k-th entry in the complete quadrupling system modulo N = 2*n + 1, for n >= 0, with the S(N) = A339049((N-1)/2) cycles of length A053447((N-1)/2) written in row n. See the comment above for QS(N,s(N,i)), i = 1, 2, ..., S(N).

A381499 a(n) = sum of numbers k < n such that 1 < gcd(k,n) < k and rad(k) does not divide n, where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 0, 10, 0, 28, 28, 42, 0, 39, 0, 65, 65, 80, 0, 102, 45, 126, 96, 159, 0, 111, 0, 210, 148, 210, 138, 253, 0, 280, 221, 338, 0, 342, 0, 411, 366, 444, 0, 547, 140, 563, 403, 601, 0, 700, 344, 708, 512, 750, 0, 751, 0, 868, 703, 930
Offset: 1

Views

Author

Michael De Vlieger, Mar 02 2025

Keywords

Comments

Analogous to A066760(n), the sum of row n of A133995, and A381497(n), sum of row n of A381094.

Examples

			Table of n and a(n) for select n, showing prime power decomposition of the latter and row n of A272619:
 n   a(n)  Factor(a(n))  Row n of A272619
-----------------------------------------------------
 8     6   2 * 3         {6}
 9     6   2 * 3         {6}
10     6   2 * 3         {6}
12    10   2 * 5         {10}
14    28   2^2 * 7       {6,10,12}
15    28   2^2 * 7       {6,10,12}
16    42   2 * 3 * 7     {6,10,12,14}
18    39   3 * 13        {10,14,15}
20    65   5 * 13        {6,12,14,15,18}
21    65   5 * 13        {6,12,14,15,18}
22    80   2^4 * 5       {6,10,12,14,18,20}
24   102   2 * 3 * 17    {10,14,15,20,21,22}
25    45   3^2 * 5       {10,15,20}
26   126   2 * 3^2 * 7   {6,10,12,14,18,20,22,24}
27    96   2^5 * 3       {6,12,15,18,21,24}
28   159   3 * 53        {6,10,12,18,20,21,22,24,26}
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; If[PrimeQ[n], 0, Total@ Select[Range[n], And[1 < GCD[#, n] < #, ! Divisible[n, rad[#]]] &]], {n, 120}]

Formula

a(n) is the sum of row n of A272619.
a(n) = 0 for prime n, n = 4, and n = 6.

A061097 a(n) is the concatenation of the phi(n) numbers between 1 and n that are relatively prime to n.

Original entry on oeis.org

1, 1, 12, 13, 1234, 15, 123456, 1357, 124578, 1379, 12345678910, 15711, 123456789101112, 13591113, 12478111314, 13579111315, 12345678910111213141516, 157111317, 123456789101112131415161718
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Examples

			a(6) = 15, 1 and 5 are the two coprime numbers less than 6.
a(7) = 123456. 7 is a prime. phi(7) = 6 hence all the numbers less than 7 are concatenated.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local i,t;
      t:= 1;
      for i from 2 to n-1 do if igcd(i,n)=1 then t:= t*10^(1+ilog10(i))+i fi od;
      t
    end proc:
    map(f, [$1..30]); # Robert Israel, Jun 13 2018
  • PARI
    a(n)=j=0;for(k=1,n,if(gcd(k,n)==1,j=j*10^#digits(k)+k));j \\ Eric Chen, Jun 13 2018
    
  • PARI
    a(n) = eval(concat(apply(x->Str(x), select(x->(gcd(n, x) == 1), [1..n])))); \\ Michel Marcus, Jun 14 2018

Extensions

a(11)-a(19) from Carl Najafi, Apr 30 2011

A092249 Positions of the integers in the standard diagonal enumeration of the rationals (with the integers in the first column and diagonals moving up to the right).

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 22, 28, 32, 42, 46, 58, 64, 72, 80, 96, 102, 120, 128, 140, 150, 172, 180, 200, 212, 230, 242, 270, 278, 308, 324, 344, 360, 384, 396, 432, 450, 474, 490, 530, 542, 584, 604, 628, 650, 696, 712, 754, 774, 806, 830, 882, 900, 940, 964
Offset: 1

Views

Author

Andrew Niedermaier, Feb 20 2004

Keywords

Comments

A002088 without the leading zero. [R. J. Mathar, Jul 20 2009]

Examples

			The first few terms of the full enumeration are 1, 2, 1/2, 3, 1/3, 4, 3/2, 2/3, 1/4, 5, giving a(n) = 1, 2, 4, 6, 10,...
Contribution from _R. J. Mathar_, Jul 20 2009: (Start)
The positions in the first column of the table
....1..1/2..1/3..1/4..1/5..1/6..1/7..1/8..1/9.1/10.1/11.1/12
....2.......2/3.......2/5.......2/7.......2/9......2/11.....
....3..3/2.......3/4..3/5.......3/7..3/8......3/10.3/11.....
....4.......4/3.......4/5.......4/7.......4/9......4/11.....
....5..5/2..5/3..5/4.......5/6..5/7..5/8..5/9......5/11.5/12
....6.................6/5.......6/7................6/11.....
....7..7/2..7/3..7/4..7/5..7/6.......7/8..7/9.7/10.7/11.7/12
....8.......8/3.......8/5.......8/7.......8/9......8/11.....
....9..9/2.......9/4..9/5.......9/7..9/8......9/10.9/11.....
...10......10/3................10/7......10/9.....10/11.....
...11.11/2.11/3.11/4.11/5.11/6.11/7.11/8.11/911/10.....11/12
...12................12/5......12/7...............12/11.....
if scanned along rising antidiagonals, as defined by the ratios A038566(i)/A020653(i). (End)
		

Crossrefs

Programs

  • Mathematica
    Accumulate[EulerPhi[Range[100]]] (* Paolo Xausa, Oct 19 2023 *)

Extensions

a(11) and a(12) corrected by R. J. Mathar, Jul 20 2009
Incorrect recurrence formula removed by R. J. Mathar, Jul 29 2009
More terms (using A002088) from Michel Marcus, Sep 10 2018

A128248 a(n) = Sum_{k=1..phi(n)} t(k,n)*(-1)^k, where t(k,n) is the k-th positive integer that is coprime to n and phi(n) = A000010(n).

Original entry on oeis.org

-1, -1, 1, 2, 2, 4, 3, 4, 3, 4, 5, 8, 6, 8, 8, 8, 8, 12, 9, 8, 8, 12, 11, 16, 10, 12, 9, 16, 14, 16, 15, 16, 16, 16, 16, 24, 18, 20, 16, 16, 20, 16, 21, 24, 24, 24, 23, 32, 21, 20, 24, 24, 26, 36, 24, 32, 24, 28, 29, 32, 30, 32, 24, 32, 32, 32, 33, 32, 32, 32, 35, 48, 36, 36, 40, 40, 40, 32, 39, 32, 27, 40, 41, 32, 40, 44, 40, 48, 44, 48, 48
Offset: 1

Views

Author

Leroy Quet, May 03 2007

Keywords

Comments

a(1) and a(2) are the only negative terms of the sequence.

Examples

			The positive integers which are <= 10 and are coprime to 10 are 1,3,7,9. So a(10) = -1 + 3 - 7 + 9 = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory): t:=proc(k,n) local A,i: A:={}: for i from 1 while nops(A)<=k do if igcd(i,n)=1 then A:=A union {i} else A:=A: fi od: A[k] end: a:=n->add((-1)^k*t(k,n),k=1..phi(n)): seq(a(n),n=1..100); # Emeric Deutsch, May 06 2007
  • Mathematica
    Table[Total[Times@@@Partition[Riffle[Select[Range[n],CoprimeQ[#,n]&],{-1,1},{2,-1,2}],2]],{n,100}] (* Harvey P. Dale, May 05 2013 *)

Extensions

More terms from Emeric Deutsch, May 06 2007

A141455 Irregular triangle showing the set of all possible values of primes modulo n in row n.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 3, 4, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 5, 7, 1, 2, 3, 4, 5, 7, 8, 1, 2, 3, 5, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 5, 7, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 5, 7, 9, 11, 13, 1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 1, 2, 3, 5, 7, 9, 11, 13, 15
Offset: 2

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 07 2008

Keywords

Examples

			Table begins:0, 1;
0, 1, 2;
1, 2, 3;
0, 1, 2, 3, 4;
1, 2, 3, 5;
0, 1, 2, 3, 4, 5, 6;
1, 2, 3, 5, 7;
1, 2, 3, 4, 5, 7, 8;
1, 2, 3, 5, 7, 9;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
1, 2, 3, 5, 7, 11;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
1, 2, 3, 5, 7, 9, 11, 13;
1, 2, 3, 4, 5, 7, 8, 11, 13, 14;
1, 2, 3, 5, 7, 9, 11, 13, 15;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
1, 2, 3, 5, 7, 11, 13, 17;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18;
1, 2, 3, 5, 7, 9, 11, 13, 17, 19;
		

Crossrefs

Cf. A057859 (row lengths), A039701 (row n=3), A039704 (row n=6), A027748, A038566.

Programs

  • Mathematica
    Table[Union[FactorInteger[n][[All, 1]] /. n -> 0, Select[Range[n - 1], CoprimeQ[n, #] &]], {n, 2, 15}] (* Michael De Vlieger, Apr 18 2022 *)

Formula

Row n = A027748(n) U A038566(n), writing n as 0 iff n is prime. - Michael De Vlieger, Apr 18 2022

A216251 a(n) = n-th decimal digit of the decimal expansion of the n-th Farey fraction ordered by rank.

Original entry on oeis.org

0, 9, 0, 3, 6, 0, 0, 0, 0, 0, 0, 6, 3, 4, 5, 5, 2, 5, 8, 0, 0, 0, 0, 1, 2, 4, 5, 7, 8, 0, 0, 0, 0, 0, 1, 7, 3, 5, 5, 3, 7, 1, 9, 3, 6, 3, 6, 0, 1, 3, 7, 6, 3, 1, 6, 9, 9, 1, 7, 5, 7, 5, 2, 7, 7, 6, 3, 6, 6, 3, 3, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0, 8, 7, 4, 9, 7, 1, 0, 5, 7, 1, 9, 1, 4, 5, 5, 9, 5, 7, 8, 1, 2, 4, 8, 6
Offset: 1

Views

Author

Robert G. Wilson v, Mar 14 2013

Keywords

Comments

Used as an example in the Schaffter link to support Cantor's diagonal argument. Most probably irrational and possible normal.

Examples

			The first decimal digit of 0 is 0, the second decimal digit of 1 (=0.99999...) is 9, the third decimal digit of 1/2 is 0, the fourth decimal digit of 1/3 is 3, the fifth decimal digit of 2/3 is 6, ..., the twelfth decimal digit of 1/6 is 6, the thirteenth decimal digit of 5/6 is 3, the fourteenth decimaldigit of 1/7 is 4, ..., .
		

References

  • Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin Heidelberg NY, Section of Analysis, Chptr 15, "Sets, function, and the continuum hypothesis", 2000, pp. 87 - 98.
  • Georg Cantor, Über eine Eigenschaft des Inbegriffes aller reellen Zahlen ("On the Characteristic Property of All Real Numbers")
  • Timothy Gowers, Editor, with June Barrow-Green & Imre Leader, Assc. Editors, The Princeton Companion to Mathematics, Princeton Un. Press, Princeton & Oxford, 2008, pp. 171 & 779
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §7.5 Transfinite Numbers, pp. 257-262.

Crossrefs

Programs

  • Mathematica
    FareyOrder[n_] := Select[ Table[a/n, {a, n}], Denominator[#] == n &]; lst = Join[{0, .999999}, Flatten[ Table[ FareyOrder[n], {n, 2, 19}]]]; f[n_] := RealDigits[ lst[[n]], 10, 2 n][[1, n]]; Array[f, 105]

Formula

The n-th decimal digit of the n-th Farey fraction in order, i.e., 0, 1 (=0.99999...), 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, 1/7, 2/7, ..., . (this is A038566/A038567)

A224537 Least odd number d such that the Collatz iteration of d has the following property: if the length of the iteration is b and the maximum value occurs at c, the ratio c/b is the n-th Farey-like fraction.

Original entry on oeis.org

1, 3, 5, 215, 21, 1625, 13, 901, 467, 771667051
Offset: 1

Views

Author

T. D. Noe, Apr 23 2013

Keywords

Comments

The Farey-like fractions are 1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6,.... The numerators/denominators are in A038566/A038567. We conclude (unsurprisingly) that the maximum value of a Collatz iteration usually appears toward the beginning of the iteration.

Examples

			Viewed as an irregular triangle, with 0's for unknown terms:
1
3,
5, 215,
21, 1625,
13, 901, 467, 771667051,
53, 0,
67, 35, 1815, 43641, 97, 0,
141, 23, 90435, 0,
93, 79, 15, 895, 763, 0,
61, 603, 1224211, 0,
37, 267, 59, 8857, 5793, 335737, 60221, 5434799, 0, 0
		

Crossrefs

Cf. A224533.

A278338 Irregular triangle read by rows in which row n contains the first Carmichael number equal to m mod n where m is coprime to n, 0 <= m < n, ordered by m.

Original entry on oeis.org

561, 561, 1105, 2465, 561, 8911, 561, 46657, 52633, 1729, 1105, 2465, 561, 46657, 294409, 29341, 512461, 1105, 561, 1024651, 2821, 8911, 1729, 1909001, 2821, 162401, 1105, 2465, 561, 52633, 46657, 1729, 2465, 1729, 10585, 29341, 1105, 46657, 1193221
Offset: 1

Views

Author

Keywords

Comments

The n-th row contains phi(n) terms. Wright proves that this sequence exists for each coprime m and n.

Examples

			561 = 0 mod 1;
561 = 1 mod 2;
1105 = 1 mod 3, 2465 = 2 mod 3;
561 = 1 mod 4, 8911 = 3 mod 4;
561 = 1 mod 5, 46657 = 2 mod 5, 52633 = 3 mod 5, 1729 = 4 mod 5;
1105 = 1 mod 6, 2465 = 5 mod 6;
		

Crossrefs

Formula

a(n) is the least Carmichael number equal to A038566(n) mod A038567(n).

A285788 Irregular triangle T(n,m): nonprime 1 <= k <= n such that n and k are coprime.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 1, 4, 8, 1, 9, 1, 4, 6, 8, 9, 10, 1, 1, 4, 6, 8, 9, 10, 12, 1, 9, 1, 4, 8, 14, 1, 9, 15, 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 1, 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 1, 9, 1, 4, 8, 10, 16, 20, 1, 9, 15, 21, 1, 4, 6, 8, 9, 10
Offset: 1

Views

Author

Michael De Vlieger, Apr 26 2017

Keywords

Comments

Row n is a subset of A038566(n) such that the union of a(n) and A112484(n) = A038566(n).
Row lengths are A048864(n) = A000010(n)-(A000720(n)-A001221(n)), i.e., phi(n)-(pi(n)-omega(n)).
1 appears in every row since 1 is not prime and coprime to all n.
4 is the smallest composite and appears first in row 5 since 4 divides 4.
Rows that contain the single term 1 are in A048597; the largest n = 30 such that the only term is 1.
For prime p, row p contains 1 and all composites k < p, since 1 < m < p are coprime to p.

Examples

			Triangle begins:
  n\m  1  2   3   4  5   6   7
   1:  1
   2:  1
   3:  1
   4:  1
   5:  1  4
   6:  1
   7:  1  4   6
   8:  1
   9:  1  4   8
  10:  1  9
  11:  1  4   6   8  9  10
  12:  1
  13:  1  4   6   8  9  10  12
  14:  1  9
  15:  1  4   8  14
  16:  1  9  15
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Range@ n, And[! PrimeQ@ #, CoprimeQ[#, n]] &], {n, 23}] // Flatten
  • Python
    from sympy import gcd, isprime
    def a(n): return list(filter(lambda k: isprime(k)==0 and gcd(k, n)==1, range(1, n + 1)))
    for n in range(1, 21): print(a(n)) # Indranil Ghosh, Apr 26 2017
Previous Showing 71-80 of 93 results. Next