cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A172978 a(n) = binomial(n+10, 10)*4^n.

Original entry on oeis.org

1, 44, 1056, 18304, 256256, 3075072, 32800768, 318636032, 2867724288, 24216338432, 193730707456, 1479398129664, 10848919617536, 76776969601024, 526470648692736, 3509804324618240, 22813728110018560, 144934272698941440, 901813252348968960, 5505807224867389440
Offset: 0

Views

Author

Zerinvary Lajos, Feb 06 2010

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+10, 10)*4^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
  • Mathematica
    Table[Binomial[n + 10, 10]*4^n, {n, 0, 20}]

Formula

From Amiram Eldar, Mar 27 2022: (Start)
G.f.: 1/(1 - 4*x)^11.
Sum_{n>=0} 1/a(n) = 14269429/63 - 787320*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 78125000*log(5/4) - 1098284605/63. (End)

A305833 Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-4x-x^2) are given by the sequence generated by the row sums.
The row sums are A001076 (Denominators of continued fraction convergent to sqrt(5)).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 4.236067977...; a metallic mean (see A098317), when n approaches infinity.

Examples

			Triangle begins:
         1;
         4;
        16,        1;
        64,        8;
       256,       48,        1;
      1024,      256,       12;
      4096,     1280,       96,       1;
     16384,     6144,      640,      16;
     65536,    28672,     3840,     160,      1;
    262144,   131072,    21504,    1280,     20;
   1048576,   589824,   114688,    8960,    240,    1;
   4194304,  2621440,   589824,   57344,   2240,   24;
  16777216, 11534336,  2949120,  344064,  17920,  336,  1;
  67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.

Crossrefs

Row sums give A001076.
Cf. A000302 (column 0), A002697 (column 1), A038845 (column 2), A038846 (column 3), A040075 (column 4).
Cf. A013611.
Cf. A098317.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1 / (1 - 4*t*x - t^2).

A367592 Expansion of 1/((1-x) * (1-4*x)^3).

Original entry on oeis.org

1, 13, 109, 749, 4589, 26093, 140781, 730605, 3679725, 18097645, 87303661, 414459373, 1941186029, 8987616749, 41199871469, 187228759533, 844358755821, 3782116386285, 16838816966125, 74563177424365, 328550363440621, 1441256130749933, 6296699479008749
Offset: 0

Views

Author

Seiichi Manyama, Nov 24 2023

Keywords

Crossrefs

Partial sums of A038845.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)*(1 - 4*x)^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 04 2025 *)
  • PARI
    a(n) = ((9*n^2+21*n+14)*4^(n+1)-2)/54;

Formula

G.f.: 1/((1-x) * (1-4*x)^3).
a(n) = ((9*n^2+21*n+14) * 4^(n+1) - 2)/54.
a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4). - Wesley Ivan Hurt, Aug 04 2025

A090299 Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2004

Keywords

Comments

Read as a number triangle, this is the Riordan array (c(x),x/sqrt(1-4x)) where c(x) is the g.f. of A000108. - Paul Barry, May 16 2005

Examples

			row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
		

Crossrefs

Other rows : A029887, A042941, A045724, A042985, A045492. Columns : A000012, A005408. Row n is the convolution of the row (n-j) with A000984, A000302, A002457, A002697 (first term omitted), A002802, A038845, A020918, A038846, A020920 for j=1, 2, ..9 respectively.

Formula

T(n, k) = K_k(n)= Sum_{j>=0} A090285(k, j)*2^j*binomial(n, j). T(n, 1) = 2*n+1. T(n, 2) = 2*A028387(n).

Extensions

Corrected by Alford Arnold, Oct 18 2006
Previous Showing 31-34 of 34 results.