cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A019315 Decimal expansion of e^Pi + Pi + e.

Original entry on oeis.org

2, 9, 0, 0, 0, 5, 6, 7, 1, 1, 4, 8, 2, 8, 1, 0, 7, 4, 7, 9, 5, 5, 2, 0, 1, 7, 2, 2, 2, 5, 8, 0, 7, 1, 2, 7, 6, 2, 2, 2, 0, 5, 2, 2, 7, 3, 5, 6, 7, 5, 2, 7, 7, 3, 8, 9, 3, 8, 6, 9, 5, 8, 6, 2, 9, 5, 5, 6, 2, 3, 5, 3, 8, 7, 3, 3, 0, 2, 0, 9, 3, 7, 6, 7, 1, 6, 3, 8, 9, 0, 0, 0, 9, 3, 4, 8, 3, 2, 7
Offset: 2

Views

Author

Keywords

Examples

			29.00056711482810747955201722258071276222052273...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[E^Pi + Pi + E, 10, 100]] (* Paolo Xausa, May 02 2024 *)

A059196 Engel expansion of e^Pi = 23.14069... .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 232, 238, 428, 1103, 3261, 6085, 15565, 20674, 43910, 177426, 193017, 1480418, 1739984, 2573921, 5238757, 14403086, 25953812, 34670065, 84077823, 258624998, 330484686
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[E^Pi, 7!], 100] (* G. C. Greubel, Dec 28 2016 *)

A104790 Lengths of the sections of decimal expansion of exp(Pi) containing all 10 digits at least once.

Original entry on oeis.org

25, 17, 40, 29, 26, 23, 22, 31, 30, 27, 31, 28, 31, 20, 13, 24, 17, 30, 37, 39, 30, 24, 28, 40, 20, 44, 32, 21, 18, 19, 18, 65, 26, 20, 24, 51, 25, 35, 37, 23, 39, 23, 20, 32, 25, 28, 16, 33, 20, 34, 44, 41, 32, 21, 31, 43, 17, 33, 17, 30, 44, 35, 36, 45, 19, 13, 36, 24, 17
Offset: 1

Views

Author

Zak Seidov, Mar 25 2005

Keywords

Comments

Among first 500 sections, s483 has the minimal length=12. In general, in decimal expansion of exp(pi), the first three partitions of 10 distinct digits, are: p[12186]={8,4,2,7,0,3,5,6,9,1}, p[13451]={0,7,9,5,3,4,1,6,2,8}, p[15422]={0,2,9,1,3,8,7,5,6,4}.

Examples

			s1={2,3,1,4,0,6,9,2,6,3,2,7,7,9,2,6,9,0,0,5,7,2,9,0,8}-25 digits,
s2={6,3,6,7,9,4,8,5,4,7,3,8,0,2,6,6,1}-17 digits,
s3={2,3,1,4,0,6,9,2,6,3,2,7,7,9,2,6,9,0,0,5,7,2,9,0,8}-40 digits,
s483={4,7,8,1,3,5,6,6,2,4,0,9}- 12 digits.
		

Crossrefs

A105008 Primes from merging of 3 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

263, 277, 269, 863, 367, 547, 661, 211, 199, 409, 971, 719, 199, 997, 967, 877, 773, 383, 587, 653, 863, 223, 991, 101, 137, 401, 103, 881, 449, 449, 491, 677, 367, 163, 631, 821, 773, 347, 353, 383, 331, 821, 919, 193, 443, 433, 557, 727, 271, 823, 449
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits/@Partition[RealDigits[Exp[Pi], 10, 500][[1]], 3, 1], #>99&&PrimeQ[#]&] (* Vincenzo Librandi, Apr 26 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 26 2013

A105009 Primes from merging of 4 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

6367, 1993, 1697, 6971, 9719, 1997, 7549, 4801, 1087, 4441, 8447, 5879, 2689, 6899, 1013, 7417, 1039, 7243, 8059, 5881, 7841, 1367, 3671, 3821, 4703, 3833, 2129, 4789, 5443, 1823, 8237, 8059, 4547, 5479, 7901, 9013, 2659, 5101, 1499, 9643, 4229, 1607
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits /@ Partition[RealDigits[Exp[Pi], 10, 500][[1]], 4, 1], # > 999 && PrimeQ[#] &] (* Vincenzo Librandi, Apr 27 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 27 2013

A105010 Primes from merging of 5 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

69263, 63277, 32779, 90863, 35069, 52783, 77731, 69383, 44587, 79609, 65327, 53279, 24223, 84401, 41039, 68477, 77243, 68059, 95881, 84449, 44491, 16319, 31963, 34147, 11287, 63773, 47353, 82129, 78919, 57271, 13397, 65951, 95101
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits /@ Partition[RealDigits[Exp[Pi], 10, 500][[1]], 5, 1], # > 9999 && PrimeQ[#] &] (* Vincenzo Librandi, Apr 27 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 27 2013

A105011 Primes from merging of 6 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

926327, 948547, 802661, 235069, 754921, 704801, 358447, 584471, 844717, 365327, 103951, 309667, 367163, 478403, 821651, 773147, 470347, 353833, 538331, 162821, 433627, 655727, 498961, 547901, 901339, 229681, 681607, 565381, 362069, 430487
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits /@ Partition[RealDigits[Exp[Pi], 10, 500][[1]], 6, 1], # > 99999 && PrimeQ[#] &] (* Vincenzo Librandi, Apr 27 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 27 2013

A105012 Primes from merging of 7 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

9005729, 7290863, 5046409, 5243423, 3516971, 6759527, 7965863, 6924223, 1013741, 3868477, 8477243, 1128763, 8763773, 4789193, 3655727, 9168487, 2645479, 5479013, 7924229, 7995653, 5381423, 8142353, 9580729, 1691939
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits /@ Partition[RealDigits[Exp[Pi], 10, 500][[1]], 7, 1], # > 999999 && PrimeQ[#] &] (* Vincenzo Librandi, Apr 27 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 27 2013

A105013 Primes from merging of 8 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

29086367, 67948547, 79485473, 45278351, 67549219, 41469383, 71744587, 27965863, 68477243, 44984449, 49844491, 11287637, 63773147, 77314703, 70347353, 29404789, 18237449, 23744989, 72645479, 83402659, 65381423
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits /@ Partition[RealDigits[Exp[Pi], 10, 500][[1]], 8, 1], # > 9999999 && PrimeQ[#] &] (* Vincenzo Librandi, Apr 27 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 27 2013

A114605 Sum of first n digits of e to digit-wise power of first n digits of Pi.

Original entry on oeis.org

8, 15, 16, 24, 56, 134217784, 134217785, 134479929, 134479961, 134480473, 134481497, 134872122, 522292611, 522292611, 522554755, 522554880, 522554884, 522554911, 522945536, 522945617
Offset: 1

Views

Author

Jonathan Vos Post, Feb 17 2006

Keywords

Examples

			Since e = 2.71828182845904523536028747135266249775724709369995957496696762772407663...
and Pi =
3.1415926535897932384626433832795028841971693993751058209749445923078164062...
a(1) = 8 = 2^3.
a(2) = 15 = 2^3 + 7^1.
a(3) = 16 = 2^3 + 7^1 + 1^4.
a(4) = 24 = 2^3 + 7^1 + 1^4 + 8^1.
a(5) = 56 = 2^3 + 7^1 + 1^4 + 8^1 + 2^5.
a(6) = 134217784 = 2^3 + 7^1 + 1^4 + 8^1 + 2^5 + 8^9.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=20,pi,ee},pi=RealDigits[Pi,10,nn][[1]];ee=RealDigits[E, 10, nn] [[1]]; Table[Total[Take[ee,n]^Take[pi,n]],{n,nn}]] (* Harvey P. Dale, Jan 13 2017 *)

Formula

a(n) = Sum_{i=1..n} A001113(i)^A000796(i).
Previous Showing 21-30 of 38 results. Next