cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A039710 a(n) = n-th prime modulo 12.

Original entry on oeis.org

2, 3, 5, 7, 11, 1, 5, 7, 11, 5, 7, 1, 5, 7, 11, 5, 11, 1, 7, 11, 1, 7, 11, 5, 1, 5, 7, 11, 1, 5, 7, 11, 5, 7, 5, 7, 1, 7, 11, 5, 11, 1, 11, 1, 5, 7, 7, 7, 11, 1, 5, 11, 1, 11, 5, 11, 5, 7, 1, 5, 7, 5, 7, 11, 1, 5, 7, 1, 11, 1, 5, 11, 7, 1, 7, 11, 5, 1, 5, 1, 11
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 6*n. - Amiram Eldar, Dec 11 2024

A039711 a(n) = n-th prime modulo 13.

Original entry on oeis.org

2, 3, 5, 7, 11, 0, 4, 6, 10, 3, 5, 11, 2, 4, 8, 1, 7, 9, 2, 6, 8, 1, 5, 11, 6, 10, 12, 3, 5, 9, 10, 1, 7, 9, 6, 8, 1, 7, 11, 4, 10, 12, 9, 11, 2, 4, 3, 2, 6, 8, 12, 5, 7, 4, 10, 3, 9, 11, 4, 8, 10, 7, 8, 12, 1, 5, 6, 12, 9, 11, 2, 8, 3, 9, 2, 6, 12, 7, 11, 6
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (13/2)*n. - Amiram Eldar, Dec 11 2024

A039712 a(n) = n-th prime modulo 14.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 3, 5, 9, 1, 3, 9, 13, 1, 5, 11, 3, 5, 11, 1, 3, 9, 13, 5, 13, 3, 5, 9, 11, 1, 1, 5, 11, 13, 9, 11, 3, 9, 13, 5, 11, 13, 9, 11, 1, 3, 1, 13, 3, 5, 9, 1, 3, 13, 5, 11, 3, 5, 11, 1, 3, 13, 13, 3, 5, 9, 9, 1, 11, 13, 3, 9, 3, 9, 1, 5, 11, 5, 9
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 7*n. - Amiram Eldar, Dec 12 2024

A039713 a(n) = n-th prime modulo 15.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 2, 4, 8, 14, 1, 7, 11, 13, 2, 8, 14, 1, 7, 11, 13, 4, 8, 14, 7, 11, 13, 2, 4, 8, 7, 11, 2, 4, 14, 1, 7, 13, 2, 8, 14, 1, 11, 13, 2, 4, 1, 13, 2, 4, 8, 14, 1, 11, 2, 8, 14, 1, 7, 11, 13, 8, 7, 11, 13, 2, 1, 7, 2, 4, 8, 14, 7, 13, 4, 8, 14, 7
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (15/2)*n. - Amiram Eldar, Dec 12 2024

A039714 a(n) = n-th prime modulo 16.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 1, 3, 7, 13, 15, 5, 9, 11, 15, 5, 11, 13, 3, 7, 9, 15, 3, 9, 1, 5, 7, 11, 13, 1, 15, 3, 9, 11, 5, 7, 13, 3, 7, 13, 3, 5, 15, 1, 5, 7, 3, 15, 3, 5, 9, 15, 1, 11, 1, 7, 13, 15, 5, 9, 11, 5, 3, 7, 9, 13, 11, 1, 11, 13, 1, 7, 15, 5, 11, 15, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 8*n. - Amiram Eldar, Dec 12 2024

A257482 Numbers m such that prime(m) mod 8 == prime(m) mod 27.

Original entry on oeis.org

1, 2, 3, 4, 48, 84, 85, 119, 181, 211, 212, 213, 270, 296, 297, 326, 352, 353, 354, 378, 483, 484, 485, 513, 514, 539, 566, 591, 641, 665, 666, 691, 713, 739, 766, 790, 815, 816, 841, 864, 865, 890, 914, 936, 937, 960, 1007, 1029, 1054, 1055, 1076, 1077, 1104, 1105, 1151
Offset: 1

Views

Author

Zak Seidov, Apr 26 2015

Keywords

Comments

Numbers n such that A039706(n)= A242125(n).
8 and 27 are first two cubes > 1.

Examples

			prime(48) = 223 = 7 (mod 8) == 7 mod(27).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | NthPrime(n) mod 8 eq NthPrime(n) mod 27]; // Vincenzo Librandi, Apr 28 2015
    
  • Mathematica
    Select[Range@ 1000, Mod[Prime@ #, 8] == Mod[Prime@ #, 27] &] (* Michael De Vlieger, Apr 27 2015 *)
  • PARI
    isok(n) = (prime(n) % 8) == (prime(n) % 27); \\ Michel Marcus, May 08 2017

Formula

a(n) = A000720(A257483(n)).

Extensions

More terms from Vincenzo Librandi, Apr 28 2015

A257483 Primes p such that (p mod 8) = (p mod 27).

Original entry on oeis.org

2, 3, 5, 7, 223, 433, 439, 653, 1087, 1297, 1301, 1303, 1733, 1949, 1951, 2161, 2377, 2381, 2383, 2593, 3457, 3461, 3463, 3673, 3677, 3889, 4111, 4327, 4759, 4969, 4973, 5189, 5407, 5623, 5839, 6053, 6269, 6271, 6481, 6701, 6703, 6917, 7129, 7349, 7351, 7561
Offset: 1

Views

Author

Zak Seidov, Apr 26 2015

Keywords

Comments

a(n) is 2, 3 or of the form 216k + r where r is in {1, 5, 7} - David A. Corneth, May 26 2015

Examples

			223 == 7 (mod 8) == 7 (mod 27),  433 == 1 (mod 8) == 1 (mod 27).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(8000) | p mod 8  eq  p mod 27]; // Vincenzo Librandi, Apr 28 2015
    
  • Maple
    select(isprime,[2,3,seq(seq(216*k+r,r=[1,5,7]),k=0..1000)]); # Robert Israel, May 26 2015
  • Mathematica
    Select[Prime@ Range@ 1000, Mod[#, 8] == Mod[#, 27] &] (* Michael De Vlieger, Apr 27 2015 *)
  • PARI
    is(n)=my(k=n%216); (k==1||k==5||k==7) && isprime(n) \\ Charles R Greathouse IV, May 26 2015

Formula

a(n) = A000040(A257482(n)).
a(n) ~ 24n log n. - Charles R Greathouse IV, May 26 2015
Previous Showing 11-17 of 17 results.