cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A040930 Continued fraction for sqrt(962).

Original entry on oeis.org

31, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62
Offset: 0

Views

Author

Keywords

Examples

			31 + 1/(62 + 1/(62 + 1/(62 + 1/(62 + ...)))) = sqrt(962).
		

Crossrefs

Cf. A042860/A042861 (convergents).
Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870 (contfrac(sqrt(901)) = (30,60,60,...)).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(962)),confrac);
  • Mathematica
    PadRight[{31},100,62] (* Harvey P. Dale, Sep 18 2012 *)

Formula

G.f.: 31*(1+x)/(1-x). - Colin Barker, Aug 11 2012
From Elmo R. Oliveira, Feb 16 2024: (Start)
a(n) = 62 for n >= 1.
E.g.f.: 62*exp(x) - 31.
a(n) = 31*A040000(n). (End)

A121740 Solutions to the Pell equation x^2 - 17y^2 = 1 (y values).

Original entry on oeis.org

0, 8, 528, 34840, 2298912, 151693352, 10009462320, 660472819768, 43581196642368, 2875698505576520, 189752520171407952, 12520790632807348312, 826182429245113580640, 54515519539544688973928
Offset: 1

Views

Author

Rick L. Shepherd, Jul 31 2006

Keywords

Comments

After initial term this sequence bisects A041025. See A099370 for corresponding x values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2.
The first solution to the equation x^2 - 17*y^2 = 1 is (X(1); Y(1)) = (1, 0) and the other solutions are defined by: (X(n), Y(n))= (33*X(n-1) + 136*Y(n-1), 8*X(n-1) + 33*Y(n-1)) with n >= 2. - Mohamed Bouhamida, Jan 16 2020

Examples

			A099370(1)^2 - 17*a(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
		

Crossrefs

Programs

  • Magma
    I:=[0, 8]; [n le 2 select I[n] else 66*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
    
  • Mathematica
    LinearRecurrence[{66,-1},{0,8},30] (* Vincenzo Librandi, Dec 18 2011 *)
  • Maxima
    makelist(expand(((33+8*sqrt(17))^n - (33-8*sqrt(17))^n) /(4*sqrt(17)/2)), n, 0, 16); /* Vincenzo Librandi, Dec 18 2011 */
  • PARI
    \\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...].
    print1("0, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[2,1],", "))
    

Formula

a(n) = ((33+8*sqrt(17))^(n-1) - (33-8*sqrt(17))^(n-1))/(2*sqrt(17)).
From Mohamed Bouhamida, Feb 07 2007: (Start)
a(n) = 65*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 67*(a(n-1) - a(n-2)) + a(n-3). (End)
From Philippe Deléham, Nov 18 2008: (Start)
a(n) = 66*a(n-1) - a(n-2) for n > 1; a(1)=0, a(2)=8.
G.f.: 8*x^2/(1 - 66*x + x^2). (End)
E.g.f.: (1/17)*exp(33*x)*(33*sqrt(17)*sinh(8*sqrt(17)*x) + 136*(1 - cosh(8*sqrt(17)*x))). - Stefano Spezia, Feb 08 2020

Extensions

Offset changed from 0 to 1 and g.f. adapted by Vincenzo Librandi, Dec 18 2011
Previous Showing 11-12 of 12 results.