cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A077640 Smallest term of a run of at least 7 consecutive integers which are not squarefree.

Original entry on oeis.org

217070, 671346, 826824, 1092747, 1092748, 1427370, 2097048, 2779370, 3112819, 3306444, 3597723, 3994820, 4063774, 4442874, 4630544, 4842474, 5436375, 5479619, 5610644, 5634122, 6315019, 6474220, 6626319, 6677864, 7128471, 7216618, 7216619, 7295448, 7507923
Offset: 1

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Examples

			n=8870024: squares dividing n+j (j=0...8) i.e. 9 consecutive integers are as follows {4,25,121,841,4,49,961,9,16}.
		

Crossrefs

Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains), A268314 (11-chains).

Programs

  • MATLAB
    N = 10^7; % to get all terms <= N-6
    T = zeros(1,N);
    for m = 2:floor(sqrt(N))
       T([m^2 : m^2 : N]) = 1;
    end
    S = T(1:N-6).*T(2:N-5).*T(3:N-4).*T(4:N-3).*T(5:N-2).*T(6:N-1).*T(7:N);
    find(S)  % Robert Israel, Feb 03 2016
    
  • Mathematica
    s7[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 6}]]; Do[If[s7[n] == 0, Print[n]], {n, 10^7}]
    Flatten[Position[Partition[SquareFreeQ/@Range[7000000],7,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
    SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,72*10^5}],{1,1,1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    {my(N=10^6, M=0, t, m2); for(m=2,sqrtint(N), t=1; m2=m^2; M=bitor(sum(i=1,N\m^2,t<<=m2),M)); for(i=1,6,M=bitand(M,M>>1)); for(i=0,N,M||break;print1(i+=t=valuation(M,2),",");M>>=t+1)} \\ Works but is much slower than the following (16s for 10^6 vs. 3s for 10^7). Should scale better (~sqrt(n) vs linear) but doesn't because of inefficient implementation of binary operations (copies & re-allocation of very large bitmaps): increasing N from 10^5 to 10^6 multiplies CPU time by a factor of 100!
    
  • PARI
    for(n=1,10^7,forstep(k=6,0,-1,issquarefree(n+k)&&(n+=k)&&next(2));print1(n",")) \\ M. F. Hasler, Feb 03 2016

Formula

A077640 = { A078144[k] | A078144[k+2] = A078144[k]+2 } = { A070284[k] | A070284[k+3] = A070284[k]+3 } etc. Note that A049535 is defined differently. - M. F. Hasler, Feb 01 2016
a(n) = A188347(n) - 3. - Amiram Eldar, Feb 09 2021

A378087 First-differences of A067535 (least positive integer >= n that is squarefree).

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 3, 0, 0, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Does this contain all nonnegative integers? The positions of first appearances begin: 4, 1, 3, 7, 47, 241, 843, 22019, 217069, ...

Crossrefs

Ones are A007674.
Zeros are A013929, complement A005117.
Positions of first appearances are A020754 (except first term) = A045882 - 1.
First-differences of A067535.
Twos are A280892.
For prime-powers we have A377780, differences of A000015.
The nonsquarefree opposite is A378036, differences of A378033.
The restriction to primes + 1 is A378037 (opposite A378038), differences of A112926.
For nonsquarefree numbers we have A378039, see A377783, A377784, A378040.
The opposite is A378085, differences of A070321.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&!SquareFreeQ[#]&],{n,100}]]

A330486 Earliest start of a run of n numbers divisible by a seventh power larger than one.

Original entry on oeis.org

128, 76544, 2372890624, 390491792890623, 2083234733888734218749, 18962123650219836035505781245
Offset: 1

Views

Author

Jud McCranie, Dec 15 2019

Keywords

Comments

In De Koninck's book, a(4) was probable but not certain. It also gives probable terms for a(5) and a(6).
From David A. Corneth, Dec 18 2019: (Start)
a(6) <= 18962123650219836035505781245
a(7) <= 105574810222799317012520534891328125
a(8) <= 352061173826332779662070232460962002804453118
a(9) <= 74322635218313783849790472504951802188239215127109371
If any a(k) of these values are less than presented values, one of a(k) + m is divisible only by at least one p^7 for some p > 31, 0 <= m < k.
For a(6) this minimum prime is some prime p > 59. (End)

Examples

			2372890624 is divisible by 2^7, 2372890625 is divisible by 5^7, 2372890626 is divisible by 3^7.  This is the smallest number with this property, so a(3)=2372890624.
		

References

  • J.-M. De Koninck, Those Fascinating Numbers, Entry 242, p. 63, Amer. Math. Soc., 2009.

Crossrefs

Extensions

a(5) from Giovanni Resta, Dec 17 2019
a(6) from Giovanni Resta, Dec 19 2019

A330483 Earliest start of a run of n numbers divisible by an eighth power larger than one.

Original entry on oeis.org

256, 636416, 70925781248, 36430999887109373, 5031679407516945387109374
Offset: 1

Views

Author

Jud McCranie, Dec 16 2019

Keywords

Comments

Similar to sequences in the crossreferences.
a(6) <= 330987813033061096652260864453120. - Robert Israel, Jun 02 2020

Examples

			70925781248 is divisible by 2^8, 70925781249 is divisible by 3^8, 70925781250 is divisible by 5^8. This is the smallest number with this property, so a(3) = 70925781248.
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Dec 16 2019
a(5) from Giovanni Resta, Dec 17 2019

A020755 Increasing gaps between squarefree numbers (upper end).

Original entry on oeis.org

2, 5, 10, 51, 246, 849, 22026, 217077, 1092755, 8870033, 221167433, 47255689927, 82462576233, 1043460553378, 79180770078563, 3215226335143234, 23742453640900989, 125781000834058586
Offset: 1

Views

Author

Keywords

Comments

Up to n=10, a(n) is the upper end of the first gap of length n. However, for n=11 through n=16, a(n) is the upper end of the first gap of length n+1. See A020753. - M. F. Hasler, Dec 28 2015

Examples

			The first gap in A005117 occurs between 1 and 2 and has length 1. The next largest gap occurs between 3 and 5 and has length 2. The next largest gap is between 7 and 10 and has length 3. Etc. We are only interested in gaps that set new records.
		

Crossrefs

Programs

  • PARI
    A020755(n)=for(k=L=1,oo,issquarefree(k)||next;k-L>=n&&return(k);L=k) \\ M. F. Hasler, Dec 28 2015

Formula

a(n) = A020754(n) + A020753(n). - M. F. Hasler, Dec 28 2015

Extensions

Thanks to Christian Bower for additional comments.
More terms (computed using data from A020754) added by M. F. Hasler, Dec 28 2015

A268313 First term of a run of at least 10 consecutive integers which are not squarefree.

Original entry on oeis.org

221167422, 221167423, 262315467, 363504972, 463239475, 1202800371, 1407472722, 1407472723, 1557947844, 1609077723, 1911823144, 2217728772, 2695179044, 2737800168, 2847305571, 3639720042, 3639720043, 3672883247, 3865964268, 3865964269, 3982659575, 4246929267, 4818537743, 4982931368
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2016

Keywords

Crossrefs

Cf. A013929, A045882 (first of the k-chains), A051681.
Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268314 (11-chains).

Programs

  • Mathematica
    s10[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 9}]]; Do[If[Equal[s10[n], 0], Print[n]], {n, 10^8, 10^10}]

Formula

A268313 = { A078143[k] | A078143[k+1] = A078143[k]+1 } = { A077647[k] | A077647[k+2] = A077647[k]+2 } = { A077640[k] | A077640[k+3] = A077640[k]+3 }.

A268314 First term of a run of at least 11 consecutive integers which are not squarefree.

Original entry on oeis.org

221167422, 1407472722, 3639720042, 3865964268, 4982931368, 5005996146, 7108776620, 8044261244, 10249558974, 12766690268, 13585489166, 19792784322, 26995377572, 30410811296, 30477326444, 32070270968, 34317891368, 39956560824, 40841363528, 42216508746, 43133805944, 46295514872, 47255689915
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2016

Keywords

Comments

a(23) is the first term beginning a 12-chain. - Bill Hannaford, Oct 06 2016

Crossrefs

Cf. A013929, A045882 (first of the k-chains), A051681.
Cf. A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077640 (7-chains), A077647 (8-chains), A078143 (9-chains), A268313 (10-chains).

Programs

  • Mathematica
    s11[x_] := Apply[Plus, Table[Abs[MoebiusMu[x+j]], {j, 0, 10}]]; Do[If[Equal[s11[n], 0], Print[n]], {n, 10^8, 10^13}]

Formula

A268314 = { A268313[k] | A268313[k+1] = A268313[k]+1 } = { A078143[k] | A078143[k+2] = A078143[k]+2 } = { A077647[k] | A077647[k+3] = A077647[k]+3 } = { A077640[k] | A077640[k+4] = A077640[k]+4 }.

Extensions

a(12)-a(23) from Bill Hannaford, Oct 06 2016

A330480 Earliest start of a run of n numbers divisible by a fourth power larger than one.

Original entry on oeis.org

16, 80, 33614, 202099373, 40280549372, 430995495889374, 77405340617896874
Offset: 1

Views

Author

Jud McCranie, Dec 16 2019

Keywords

Comments

De Koninck's book says that "most likely" a(7)=77405340617896874.

Examples

			33614 is divisible by 7^4, 33615 is divisible by 3^4, and 33616 is divisible by 2^4.  This is the smallest number with this property, so a(3)=33614.
		

References

  • J.-M. De Koninck, Those Fascinating Numbers, Entry 242, p. 63, Amer. Math. Soc., 2009.

Crossrefs

Extensions

a(7) from Giovanni Resta, Dec 18 2019

A330481 Earliest start of a run of n numbers divisible by a fifth power larger than one.

Original entry on oeis.org

32, 1215, 2590623, 2146909373, 105636978090621, 3269698976575137500
Offset: 1

Views

Author

Jud McCranie, Dec 15 2019

Keywords

Comments

De Koninck's book gives probable a(6) = 3269698976575137500.
a(7) <= 745436945776920355709374. - Giovanni Resta, Dec 19 2019

Examples

			1215 is divisible by 3^5 and 1216 is divisible by 2^5. This is the smallest number with this property, so a(2)=1215.
		

References

  • J.-M. De Koninck, Those Fascinating Numbers, Entry 242, p. 63, Amer. Math. Soc., 2009.

Crossrefs

Extensions

a(6) from Giovanni Resta, Dec 19 2019

A330482 Earliest start of a run of n numbers divisible by a sixth power larger than one.

Original entry on oeis.org

64, 16767, 26890623, 1507545109375, 777562026420218750, 283435321166212288109372
Offset: 1

Views

Author

Jud McCranie, Dec 16 2019

Keywords

Comments

De Konnick's book gives probable terms a(5)=777562026420218750 and a(6)=283435321166212288109372.

Examples

			26890623 is divisible by 3^6, 26890624 is divisible by 2^6, and 26890625 is divisible by 5^6.  This is the smallest number with this property, so a(3) = 26890623.
		

References

  • J.-M. De Koninck, Those Fascinating Numbers, Entry 242, p. 63, Amer. Math. Soc., 2009.

Crossrefs

Extensions

a(5) from Giovanni Resta, Dec 17 2019
a(6) from Giovanni Resta, Dec 19 2019
Previous Showing 21-30 of 48 results. Next