A092378 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by six loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.
1, 1, 14061141, 54177740, 659506609478464, 9256643548177084, 155695310201316677915943, 7642657907144601059593232, 220353621720787947087602631723527
Offset: 12
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 12..60
- Saibal Mitra and Bernard Nienhuis, Osculating Random Walks on Cylinders, in Discrete Random Walks, DRW'03, Cyril Banderier and Christian Krattenthaler (eds.), Discrete Mathematics and Theoretical Computer Science Proceedings AC, pp. 259-264.
Crossrefs
Programs
-
Mathematica
M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}]; c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs; Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2-m -2*r, n], {r, 0, (n-2*m)/4}]; Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}]; Table[Q[n, 6], {n, 12, 30}] (* G. C. Greubel, Nov 15 2019 *)
Formula
Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 6).
Comments