A077657 Least number with exactly n consecutive successors, all having the same number of prime factors (counted with multiplicity).
1, 2, 33, 603, 602, 2522, 211673, 3405123, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 0
A077655 Number of consecutive successors of n having the same number of prime factors as n (counted with multiplicity).
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Comments
If a(n) > 0 then a(n+1) = a(n)-1.
Examples
33=3*11 has only two successors also with two factors: 34=2*17 and 35=5*7 (whereas 33+3=36=2*2*3*3), therefore a(33)=2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
Mathematica
snpf[n_]:=Module[{f=PrimeOmega[n],k=0},While[f==PrimeOmega[n+k],k++];k]; Array[snpf,110]-1 (* Harvey P. Dale, Aug 01 2021 *)
-
PARI
A077655(n) = { my(k=n+1,w=bigomega(n)); while(bigomega(k)==w,k++); (k-n)-1; }; \\ Antti Karttunen, Jan 22 2020
A124057 Numbers n such that n, n+1, n+2 and n+3 are products of exactly 3 primes.
602, 603, 1083, 2012, 2091, 2522, 2523, 2524, 2634, 2763, 3243, 3355, 4202, 4203, 4921, 4922, 4923, 5034, 5035, 5132, 5203, 5282, 5283, 5785, 5882, 5954, 5972, 6092, 6212, 6476, 6962, 6985, 7730, 7731, 7945, 8393, 8825, 8956, 8972, 9188, 9482, 10011
Offset: 1
Comments
n such that n, n+1, n+2 and n+3 are 3-almost primes. Subset of A113789 Numbers n such that n, n+1 and n+2 are products of exactly 3 primes. A067813 has some runs of up to 7 consecutive 3-almost primes (i.e. starting 211673). But there cannot be 8 consecutive 3-almost primes, as every run of 8 consecutive positive integers contains exactly one multiple of 8 = 2^3 and only 8 of all positive multiples of 8 is a 3-almost prime (i.e. all larger multiples have at least 4 prime factors, with multiplicity).
A subset of A045940. - Zak Seidov, Nov 05 2006
Examples
a(1) = 602 because 602 = 2 * 7 * 43 and 603 = 3^2 * 67 and 604 = 2^2 * 151 and 605 = 5 * 11^2 are all 3-almost primes. a(2) = 603 because 603 = 3^2 * 67 and 604 = 2^2 * 151 and 605 = 5 * 11^2 and 606 = 2 * 3 * 101 are all 3-almost primes. a(3) = 1083 because 1083 = 3 * 19^2 and 1084 = 2^2 * 271 and 1085 = 5 * 7 * 31 and 1086 = 2 * 3 * 181 are all 3-almost primes. a(4) = 2012 because 2012 = 2^2 * 503, 2013 = 3 * 11 * 61, 2014 = 2 * 19 * 53, 2015 = 5 * 13 * 31. a(5) = 2091 because 2091 = 3 * 17 * 41, 2092 = 2^2 * 523, 2093 = 7 * 13 * 23, 2094 = 2 * 3 * 349.
Links
- D. W. Wilson, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) if bigomega(n)=3 and bigomega(n+1)=3 and bigomega(n+2)=3 and bigomega(n+3)=3 then n else fi end: seq(a(n),n=1..15000); # Emeric Deutsch, Nov 07 2006
-
Mathematica
okQ[{a_,b_,c_,d_}]:=Union[{a,b,c,d}]=={3}; Flatten[Position[Partition[ PrimeOmega[ Range[11000]],4,1],?(okQ)]] (* _Harvey P. Dale, Sep 23 2012 *)
-
PARI
is(n)=if(!isprime((n+3)\4), return(0)); for(k=n,n+3, if(bigomega(k)!=3, return(0))); 1 \\ Charles R Greathouse IV, Feb 05 2017
-
PARI
list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\4, forprime(q=2,min(lim\(2*p),p), t=p*q; forprime(r=2,min(lim\t,q), listput(u,t*r)))); u=Set(u); for(i=4,#u, if(u[i]-u[i-3]==3, listput(v,u[i-3]))); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017
Extensions
More terms from Zak Seidov, Nov 05 2006
More terms from Emeric Deutsch, Nov 07 2006
A124729 Numbers k such that k, k+1, k+2 and k+3 are products of 5 primes.
57967, 491875, 543303, 584647, 632148, 632149, 715374, 824523, 878875, 914823, 930123, 931623, 955448, 964143, 995874, 1021110, 1053351, 1070223, 1076535, 1099374, 1251963, 1289223, 1337355, 1380246, 1380247, 1436694, 1507623, 1517282, 1539873, 1669380, 1895222
Offset: 1
Keywords
Comments
Subset of A045940 Numbers m such that factorizations of m through m+3 have same number of primes (including multiplicities).
There are no numbers k such that k, k+1, k+2 and k+3 are products of exactly 6 primes(?).
First counterexample: 8706123. - Charles R Greathouse IV, Jan 31 2017
Examples
57967=7^3*13^2, 57968=2^4*3623, 57969=3^3*19*113, 57970=2*5*11*17*31 (all product of 5 primes, including multiplicities). 632148 is the first number such that n through n+4 are 5-almost primes.
Links
- D. W. Wilson, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
SequencePosition[Table[If[PrimeOmega[n]==5,1,0],{n,19*10^5}],{1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 03 2019 *)
-
PARI
isok(n) = (bigomega(n) == 5) && (bigomega(n+1) == 5) && (bigomega(n+2) == 5) && (bigomega(n+3) == 5); \\ Michel Marcus, Oct 11 2013
Extensions
More terms from Michel Marcus, Oct 11 2013
A338454 Starts of runs of 4 consecutive numbers with the same total binary weight of their divisors (A093653).
242, 947767, 1041607, 2545015, 3275463, 8170983, 15720871, 21532430, 23752181, 25135885, 25595913, 27981703, 28226983, 30505142, 30962767, 33364805, 37264493, 49002661, 49766629, 52910454, 53408456, 57917191, 57952016, 58331576, 59230454, 60014053, 60723111, 63378005
Offset: 1
Examples
242 is a term since A093653(242) = A093653(243) = A093653(244) = A093653(245) = 18.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; m = 4; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 10^7}]; s
A124728 Numbers k such that k, k+1, k+2 and k+3 are products of 4 primes.
4023, 7314, 9162, 12122, 12123, 16674, 19434, 19940, 23874, 24723, 29094, 33234, 35124, 35125, 39234, 42182, 42183, 44163, 45175, 46988, 49147, 51793, 52854, 52855, 54584, 54585, 54663, 58375, 63594, 64074, 64075, 64323, 64491, 64712
Offset: 1
Keywords
Comments
Subset of A045940 Numbers m such that factorizations of m through m+3 have same number of primes (including multiplicities). Cf. A124057, A124729 Numbers k such that k, k+1, k+2 and k+3 are products of exactly 3,5 primes. There are no numbers k such that k, k+1, k+2 and k+3 are products of exactly 6 primes(?)
Examples
4023=3^3*149, 4024=2^3*503, 4025=5^2*7*23, 4026=2*3*11*61 (all products of 4 primes).
Links
- D. W. Wilson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Transpose[Select[Partition[Range[65000],4,1],Union[PrimeOmega[#]] == {4}&]] [[1]] (* Harvey P. Dale, Nov 01 2011 *)
A374023 Numbers m such that m .. m+11 all have the same number of prime factors, counted with multiplicity.
3195380868, 5208143601, 5208143602, 5327400945, 5604994082, 5604994083, 6940533603, 6940533604, 7109053186, 7112231268, 19355940562, 22180594465, 24073076004, 24155988484, 29495293764, 30997967601, 41999754228, 42322452483, 42322452484, 45479198003, 46553917683
Offset: 1
Keywords
Comments
Since a(3) = a(2) + 1, a(6) = a(5) + 1 and a(8) = a(7) + 1, a(2) = 5208143601, a(5) = 5604994082 and a(7) = 6940533603 are the first three m such that m .. m+12 have the same number of prime factors, counted with multiplicity.
For n <= 12, A001222(a(n)) = 4. It must always be at least 4 because at least one of a(n) .. a(n)+11 is divisible by 8.
Examples
5208143601 is a term because 5208143601 = 3 * 139 * 2153 * 5801 5208143602 = 2 * 47 * 4261 * 13003 5208143603 = 13 * 103 * 419 * 9283 5208143604 = 2^2 * 3 * 434011967 5208143605 = 5 * 7^2 * 21257729 5208143606 = 2 * 37 * 109 * 645691 5208143607 = 3^2 * 647 * 894409 5208143608 = 2^3 * 651017951 5208143609 = 73^2 * 367 * 2663 5208143610 = 2 * 3 * 5 * 173604787 5208143611 = 11 * 29 * 1129 * 14461 5208143612 = 2^2 * 7 * 186005129 all have 4 prime factors, counted with multiplicity.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isok(m) = #Set(apply(bigomega, vector(11, i, m+i-1))) == 1; \\ Michel Marcus, Jul 11 2024
Extensions
Missing term inserted by, and more terms from Martin Ehrenstein, Jul 11 2024
A375160 Square array T(n, k), n >= 2 and k >= 1, read by antidiagonals in ascending order, give the smallest number that starts a sequence of exactly k consecutive numbers each having exactly n prime factors (counted with multiplicity), or -1 if no such number exists.
4, 8, 9, 16, 27, 33, 32, 135, 170, -1, 64, 944, 1274, 603, -1, 128, 5264, 15470, 4023, 602, -1, 256, 29888, 33614, 57967, 12122, 2522, -1, 512, 50624, 3145310, 8706123, 632148, 204323, 211673, -1
Offset: 2
Comments
All positive terms are composite.
Examples
T(2,3) = 33 = 3*11, because both 34 and 35 have the same number of prime factors. Thus, 33 is the starting number of a run of 3 numbers that each have 2 prime factors (counted with multiplicity). No lesser number has this property, so T(2,3) = 33. Table begins (upper left corner = T(2,1)): 4 9 33 -1 ... 8 27 170 603 ... 16 135 1274 4023 ... 32 944 15470 57967 ... ... ... ... ... ...
Comments
Examples
Crossrefs
Formula
Extensions