cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A077657 Least number with exactly n consecutive successors, all having the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 33, 603, 602, 2522, 211673, 3405123, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 13 2002

Keywords

Comments

A001222(a(n))=A001222(a(n)+k) for k<=n;
A077655(a(n))=n and A077655(k)

Examples

			a(0)=A077656(1)=1; a(1)=A045920(1)=2; a(2)=A045939(1)=33; a(3)=A045940(2)=603; a(4)=A045941(1)=602; a(5)=A045942(1)=2522.
		

Crossrefs

Cf. A045984.

Formula

a(n)=A045984(n+1)+A077655(A045984(n+1))-n - Martin Fuller, Nov 21 2006

Extensions

More terms from Martin Fuller, Nov 21 2006

A077655 Number of consecutive successors of n having the same number of prime factors as n (counted with multiplicity).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Author

Reinhard Zumkeller, Nov 13 2002

Keywords

Comments

If a(n) > 0 then a(n+1) = a(n)-1.

Examples

			33=3*11 has only two successors also with two factors: 34=2*17 and 35=5*7 (whereas 33+3=36=2*2*3*3), therefore a(33)=2.
		

Programs

  • Mathematica
    snpf[n_]:=Module[{f=PrimeOmega[n],k=0},While[f==PrimeOmega[n+k],k++];k]; Array[snpf,110]-1 (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    A077655(n) = { my(k=n+1,w=bigomega(n)); while(bigomega(k)==w,k++); (k-n)-1; }; \\ Antti Karttunen, Jan 22 2020

A268588 Numbers n such that n, n + 1, n + 2, n + 3 and n + 4 are products of exactly three primes.

Original entry on oeis.org

602, 2522, 2523, 4202, 4921, 4922, 5034, 5282, 7730, 18241, 18242, 18571, 19129, 21931, 23161, 23305, 25203, 25553, 25554, 27290, 27291, 29233, 30354, 30793, 32035, 33843, 34561, 35714, 36001, 36835, 40313, 40314, 40394, 45265, 55361, 67609, 69667, 70202, 72721
Offset: 1

Author

K. D. Bajpai, Feb 07 2016

Keywords

Comments

Subsequence of A045941. - Zak Seidov, Jan 29 2017

Examples

			a(1) = 602: 602 = 2 * 7 * 43; 603 = 3 * 3 * 67; 604 = 2 * 2 * 151; 605 = 5 * 11 * 11; 606 = 2 * 3 * 101 are all products of three primes.
a(4) = 4202 : 4202 = 2 * 11 * 191; 4203 = 3 * 3 * 467; 4204 = 2 * 2 * 1051; 4205 = 5 * 29 * 29; 4206 = 2 * 3 * 701 are all products of three primes.
		

Crossrefs

Programs

  • Magma
    IsP3:=func< n | &+[k[2]: k in Factorization(n)] eq 3 >; [ n: n in [2..50000] | IsP3(n) and IsP3(n+1) and IsP3(n+2) and IsP3(n+3) and IsP3(n+4)];
  • Maple
    with(numtheory): A268588:= proc() if bigomega(n)=3 and bigomega(n+1)=3 and bigomega(n+2)=3 and bigomega(n+3)=3 and bigomega(n+4)=3 then RETURN (n); fi; end: seq(A268588(), n=1..100000);
  • Mathematica
    Select[Range[100000], PrimeOmega[#] == 3 && PrimeOmega[# + 1] == 3 && PrimeOmega[# + 2] == 3 && PrimeOmega[# + 3] == 3 && PrimeOmega[# + 4] == 3 &]
    SequencePosition[PrimeOmega[Range[73000]],{3,3,3,3,3}][[All,1]] (* Harvey P. Dale, Sep 03 2021 *)
  • PARI
    for(n = 1,50000, bigomega(n)==3 & bigomega(n+1)==3 & bigomega(n+2)==3 & bigomega(n+3)==3 & bigomega(n+4)==3 & print1(n,","))
    

Extensions

Comment removed by Zak Seidov, Jan 29 2017

A374023 Numbers m such that m .. m+11 all have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

3195380868, 5208143601, 5208143602, 5327400945, 5604994082, 5604994083, 6940533603, 6940533604, 7109053186, 7112231268, 19355940562, 22180594465, 24073076004, 24155988484, 29495293764, 30997967601, 41999754228, 42322452483, 42322452484, 45479198003, 46553917683
Offset: 1

Author

Zak Seidov and Robert Israel, Jun 25 2024

Keywords

Comments

Since a(3) = a(2) + 1, a(6) = a(5) + 1 and a(8) = a(7) + 1, a(2) = 5208143601, a(5) = 5604994082 and a(7) = 6940533603 are the first three m such that m .. m+12 have the same number of prime factors, counted with multiplicity.
For n <= 12, A001222(a(n)) = 4. It must always be at least 4 because at least one of a(n) .. a(n)+11 is divisible by 8.

Examples

			5208143601 is a term because
  5208143601 = 3 * 139 * 2153 * 5801
  5208143602 = 2 * 47 * 4261 * 13003
  5208143603 = 13 * 103 * 419 * 9283
  5208143604 = 2^2 * 3 * 434011967
  5208143605 = 5 * 7^2 * 21257729
  5208143606 = 2 * 37 * 109 * 645691
  5208143607 = 3^2 * 647 * 894409
  5208143608 = 2^3 * 651017951
  5208143609 = 73^2 * 367 * 2663
  5208143610 = 2 * 3 * 5 * 173604787
  5208143611 = 11 * 29 * 1129 * 14461
  5208143612 = 2^2 * 7 * 186005129
all have 4 prime factors, counted with multiplicity.
		

Crossrefs

Subsequence of A033987.
Cf. A001222.
Numbers m through m+k have the same value of A001222: A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    isok(m) = #Set(apply(bigomega, vector(11, i, m+i-1))) == 1; \\ Michel Marcus, Jul 11 2024

Formula

A001222(a(n)) = A001222(a(n)+1) = ... = A001222(a(n)+11).

Extensions

Missing term inserted by, and more terms from Martin Ehrenstein, Jul 11 2024

A338455 Starts of runs of 5 consecutive numbers with the same total binary weight of their divisors (A093653).

Original entry on oeis.org

1307029927, 2116078861, 2665774183, 2809370965, 4108623302, 4493733751, 5333670902, 5497285284, 5679049670, 8209799382, 9665369455, 9708528486, 10353426151, 10606564910, 12777118615, 12795699493, 13660293367, 13847206214, 14351020663, 15735895813, 17912257013
Offset: 1

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1) = A093653(k+2) = A093653(k+3) = A093653(k+4).
Can 6 consecutive numbers have the same total binary weight of their divisors? If they exist, then they are larger than 10^11.

Examples

			1307029927 is a term since A093653(1307029927) = A093653(1307029928) = A093653(1307029929) = A093653(1307029930) = A093653(1307029931) = 72.
		

Crossrefs

Cf. A093653.
Subsequence of A338452, A338453 and A338454.
Similar sequences: A045933, A045941, A049051.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; m = 5; fs = f /@ Range[m]; Do[If[Equal @@  fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 10^7}]; s

A375160 Square array T(n, k), n >= 2 and k >= 1, read by antidiagonals in ascending order, give the smallest number that starts a sequence of exactly k consecutive numbers each having exactly n prime factors (counted with multiplicity), or -1 if no such number exists.

Original entry on oeis.org

4, 8, 9, 16, 27, 33, 32, 135, 170, -1, 64, 944, 1274, 603, -1, 128, 5264, 15470, 4023, 602, -1, 256, 29888, 33614, 57967, 12122, 2522, -1, 512, 50624, 3145310, 8706123, 632148, 204323, 211673, -1
Offset: 2

Author

Jean-Marc Rebert, Aug 09 2024

Keywords

Comments

All positive terms are composite.

Examples

			T(2,3) = 33 = 3*11, because both 34 and 35 have the same number of prime factors. Thus, 33 is the starting number of a run of 3 numbers that each have 2 prime factors (counted with multiplicity). No lesser number has this property, so T(2,3) = 33.
Table begins (upper left corner = T(2,1)):
   4        9       33      -1 ...
   8       27      170     603 ...
  16      135     1274    4023 ...
  32      944    15470   57967 ...
  ...     ...      ...     ... ...
		

Crossrefs

Cf. Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
Previous Showing 11-16 of 16 results.