cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A238904 Smallest k such that 2^k + (2n+1) and (2n+1)*2^k + 1 are both prime, k <= n, or -1 if no such k exists.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 1, -1, 6, 1, -1, 2, 2, 1, -1, 6, 1, 2, 1, 1, 2, 9, -1, 2, 1, -1, 4, 2, -1, 12, 4, 1, 2, 1, 3, 6, 3, -1, 2, 1, -1, 4, 6, 9, 8, 2, 1, 2, 1, 3, -1, 1, -1, 6, 1, -1, 12, 6, 3, 12, 8, 1, 2, 3, 3, 4, 1, -1, -1, 3, -1, -1, 60, 3, 4, 2, 1, 12
Offset: 0

Views

Author

Keywords

Examples

			a(0) = 0 because 2^0 + (2*0+1) = 2 and (2*0+1)*2^0 + 1 = 2 are both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Catch@Block[{k=0}, While[k <= n, If[PrimeQ[2^k + 2*n + 1] && PrimeQ[(2*n + 1)*2^k + 1], Throw@k]; k++]; -1]; a/@ Range[0,80] (* Giovanni Resta, Mar 15 2014 *)

A250204 SierpiƄski problem in base 6: Least k > 0 such that n*6^k+1 is prime, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 4, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 0, 5, 1, 4, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 0, 1, 5, 5, 2, 0, 1, 1, 1, 3, 0, 2, 1, 1, 7, 0, 1, 1, 2, 1, 0, 2, 1, 1, 1, 0, 2, 1, 8, 1, 0, 1, 2, 1, 1, 0, 7, 1, 1, 4, 0, 4, 1, 2, 1, 0, 2, 5, 1, 2, 0, 1, 1, 2, 3, 0, 1, 1, 9, 2, 0, 1, 1, 1, 1, 0, 1, 6, 1, 2, 0, 1, 3, 1, 4, 0, 1, 2, 23, 1, 0, 4
Offset: 1

Views

Author

Eric Chen, Mar 11 2015

Keywords

Comments

a(5k+4) = 0, since (5k+4)*6^n+1 is always divisible by 5, but there are infinitely many numbers not in the form 5k+4 such that a(n) = 0. For example, a(174308) = 0 since 174308*6^n+1 is always divisible by 7, 13, 31, 37, or 97 (See A123159). Conjecture: if n is not in the form 5k+4 and n < 174308, then a(n) > 0.
However, according to the Barnes link no primes n*6^k+1 are known for n = 1296, 7776 and 46656, so these may be counterexamples. - Robert Israel, Mar 17 2015

Crossrefs

Cf. A250205 (Least k > 0 such that n*6^k-1 is prime).

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N), using k up to 10000
    a[1]:= 1:
    for n from 2 to N do
      if n mod 5 = 4 then a[n]:= 0
      else
        for k from 1 to 10000 do
        if isprime(n*6^k+1) then
           a[n]:= k;
           break
        fi
        od
      fi
    od:
    L:= [seq(a[n],n=1..N)]; # Robert Israel, Mar 17 2015
  • Mathematica
    (* m <= 10000 is sufficient up to n = 1000 *)
    a[n_] := For[k = 1, k <= 10000, k++, If[PrimeQ[n*6^k + 1], Return[k]]] /. Null -> 0; Table[a[n], {n, 1, 120}]
  • PARI
    a(n) = if(n%5==4, 0, for(k = 1, 10000, if(ispseudoprime(n*6^k+1), return(k))))

A252168 Smallest k > 0 such that |(2n-1) - 2^k| is prime, or -1 if no such k exists.

Original entry on oeis.org

2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 4, 1, 2, 4, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 4, 4, 47, 1, 2, 1, 2, 6, 1, 1, 2, 3, 3, 8, 1, 1, 2, 3, 1, 2, 5, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Eric Chen, Dec 14 2014

Keywords

Comments

It is known that a(254602) = -1, because |509203-2^k| is always divisible by 3, 5, 7, 13, 17, or 241. a(1147) is the first unknown term.
a((A101036(n)+1)/2) = -1, so there are infinitely many n such that a(n) = -1.
a((A133122(n)+1)/2) = A096502((A133122(n)-1)/2).

Examples

			a(12) = 2 because 2*12-1 = 23 and that 23-2^1 = 21 is not prime but 23-2^2 = 19 is.
a(69) = 6 because 2*69-1 = 137, |137-2^k| is composite for k = 1, 2, 3, 4, 5 and prime for k = 6.
Even the smallest k can be also very large. For example, a(169) = 791.
a(1147) > 65536.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[!PrimeQ[Abs[(2*n-1) - 2^k]], k++]; k, {n, 1, 1000}]
  • PARI
    A252168(n)={ my(k=1); n=2*n-1; while(!ispseudoprime(abs(n-2^k)), k++); k }

Extensions

a(19) corrected by Jinyuan Wang, Mar 25 2023

A291437 Smallest m >= 0 such that (2*n)*3^m + 1 is prime, or -1 if no such value exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 2, 0, 2, 1, 0, 1, 9, 0, 0, 4, 1, 0, 2, 0, 0, 1, 1, 0, 1, 0, 2, 4, 0, 1, 1, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 3, 1, 2, 4, 1, 1, 0, 2, 0, 1, 5, 0, 0, 1, 2, 1, 1, 0, 0, 1, 1, 0, 2, 80, 0, 6, 0, 8, 2, 0, 1
Offset: 1

Views

Author

Martin Renner, Aug 23 2017

Keywords

Comments

There exist even integers 2*n such that (2*n)*3^m + 1 is always composite.
It is conjectured that the smallest one is 125050976086 = A123159(3), therefore a(62525488043) = -1.
For the corresponding primes see A291438.
a(A005097(n)) = 0 and a(A047845(n+1)) > 0 (or = -1).

Examples

			a(4) = 2 because this is the smallest value such that 8*3^2 + 1 = 73 is prime, since 8*3^0 + 1 = 9 and 8*3^1 + 1 = 25 are not prime.
		

Crossrefs

Programs

  • Maple
    a:=[]:
    for n from 1 to 10^3 do
      t:=-1:
      for m from 0 to 10^3 do # this max value of m is sufficient up to n=10^3
        if isprime((2*n)*3^m+1) then t:=m: break: fi:
      od:
      a:=[op(a),t]:
    od:
    a;
  • Mathematica
    Table[SelectFirst[Range[0, 10^3], PrimeQ[2 n*3^# + 1] &] /. k_ /; MissingQ@ k -> -1, {n, 104}] (* Michael De Vlieger, Aug 23 2017 *)
  • PARI
    a(n) = {my(m = 0); while (!isprime(p=(2*n)*3^m + 1), m++); m;} \\ Michel Marcus, Aug 25 2017

A361076 Array, read by ascending antidiagonals, whose n-th row consists of the powers of 2, if n = 1; of the primes of the form (2*n-1)*2^k+1, if they exist and n > 1; and of zeros otherwise.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 3, 5, 8, 1, 4, 7, 6, 16, 1, 2, 6, 13, 8, 32, 2, 3, 3, 14, 15, 12, 64, 1, 8, 5, 6, 20, 25, 18, 128, 3, 2, 10, 7, 7, 26, 39, 30, 256, 6, 15, 4, 20, 19, 11, 50, 55, 36, 512, 1, 10, 27, 9, 28, 21, 14, 52, 75, 41, 1024, 1, 4, 46, 51, 10, 82, 43, 17, 92, 85, 66, 2048
Offset: 1

Views

Author

Keywords

Comments

Is a(n) <= A279709(n)?

Examples

			Table starts
  1   2   4   8  16  32  64 128 ... A000079
  1   2   5   6   8  12  18  30 ... A002253
  1   3   7  13  15  25  39  55 ... A002254
  2   4   6  14  20  26  50  52 ... A032353
  1   2   3   6   7  11  14  17 ... A002256
  1   3   5   7  19  21  43  81 ... A002261
  2   8  10  20  28  82 188 308 ... A032356
  1   2   4   9  10  12  27  37 ... A002258
  ...
(2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
		

Crossrefs

Programs

  • PARI
    vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v;
    lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ Michel Marcus, Mar 03 2023
Previous Showing 11-15 of 15 results.