cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A288517 Least integer k such that A001358(k) + A001358(k+1) is the product of exactly n prime factors (counting multiplicity).

Original entry on oeis.org

3, 1, 28, 4, 19, 39, 48, 89, 120, 551, 447, 589, 3707, 10137, 21644, 28456, 22998, 44494, 86132, 166930, 703448, 628371, 1220814, 1608668, 11153853, 6091437, 56676014, 268389220, 146153797, 193010987, 916382785, 738246947, 4702317172, 2830095027, 12627951809
Offset: 1

Views

Author

Zak Seidov, Jun 10 2017

Keywords

Examples

			n=1: k=3, A001358(3) + A001358(4) = 9 + 10 = 19 = A000040(8) (8th prime),
n=2: k=1, A001358(1)+A001358(2) = 4+6 = 10 = 2*5 = A001358(4) (4th semiprime),
n=11: k=447, A001358(447)+A001358(448) = 1535+1537 = 3072 = 2^10*3 = A069272(2) (2nd 11-almost prime).
		

Crossrefs

Extensions

a(21)-a(35) from Charles R Greathouse IV, Jun 10 2017

A321169 a(n) is the smallest prime p such that p + 2 is a product of n primes (counted with multiplicity).

Original entry on oeis.org

3, 2, 43, 79, 241, 727, 3643, 15307, 19681, 164023, 1673053, 885733, 2657203, 18600433, 23914843, 100442347, 358722673, 645700813, 4519905703, 18983603959, 48427561123, 31381059607, 261508830073, 1307544150373, 3295011258943, 24006510600883, 12709329141643, 53379182394907, 190639937124673, 2615579937350539
Offset: 1

Views

Author

Amiram Eldar and Zak Seidov, Jan 10 2019

Keywords

Comments

a(n) ~ c * 3^n. - David A. Corneth, Jan 11 2019

Examples

			a(1) = 3 as 3 + 2 = 5 (prime),
a(2) = 2 as 2 + 2 = 4 = 2*2 (semiprime),
a(3) = 43 as 43 + 2 = 45 = 3*3*5  (3-almost prime),
a(4) = 79 as 79 + 2 = 81 = 3*3*3*3 (4-almost prime).
		

Crossrefs

Programs

  • Mathematica
    ptns[n_, 0] := If[n == 0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[n < k, Return[{}]]; ptns[n, k] = 1 + Union @@ Table[PadRight[#, k] & /@ ptns[n - k, r], {r, 0, k}]]; a[n_] := Module[{i, l, v}, v = Infinity; For[i = n, True, i++, l = (Times @@ Prime /@ # &) /@ ptns[i, n]; If[Min @@ l > v, Return[v]]; minp = Min @@ Select[l - 2, PrimeQ]; If[minp < v, v = minp]]] ; Array[a, 10] (* after Amarnath Murthy at A073919 *)
  • PARI
    a(n) = forprime(p=2, , if (bigomega(p+2) == n, return (p))); \\ Michel Marcus, Jan 10 2019
    
  • PARI
    a(n) = {my(p3 = 3^n, u, c); if(n <= 2, return(4 - n)); if(isprime(p3 - 2), return(p3 - 2)); forprime(p = 5, oo, if(isprime(p3 / 3 * p - 2), u = p3 / 3 * p - 2; break ) ); for(i = 2, n, if(p3 * (5/3)^i > u, return(u)); for(j = 1, oo, if(p3 * j \ 3^i > u, next(2)); if(bigomega(j) == i, if(isprime(p3 / 3^(i) * j - 2), u = p3 / 3^(i) * j - 2; next(2) ) ) ) ); return(u) } \\ David A. Corneth, Jan 11 2019

A123118 Partial products of A101695.

Original entry on oeis.org

2, 12, 216, 8640, 933120, 209018880, 100329062400, 130026464870400, 349511137571635200, 1968446726803449446400, 22676506292775737622528000, 522466704985552994823045120000, 27820307107070725868337506549760000
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

The number of prime factors (with multiplicity) of a(n) is T(n) = A000217(n) = n*(n+1)/2.

Examples

			a(1) = 2 = prime(1).
a(2) = 12 = 2 * 6 = prime(1) * semiprime(2) = 2^2 * 3.
a(3) = 216 = 2 * 6 * 18 = prime(1) * semiprime(2) * 3-almostprime(3) = 2^3 * 3^3.
a(4) = 8640 = 2 * 6 * 18 * 40 = prime(1) * semiprime(2) * 3-almostprime(3) * 4-almostprime(4) = 2^6 * 3^3 * 5.
a(15) = 893179304874387947794472921245209518407680000 = 2 * 6 * 18 * 40 * 108 * 224 * 480 * 1296 * 2688 * 5632 * 11520 * 23040 * 53248 * 124416 * 258048 = 2^88 * 3^23 * 5^4 * 7^3 * 11 * 13.
		

Crossrefs

Formula

a(n) = Prod[i=1..n] i-th i-almost prime = Prod[i=1..n] A101695(i).

A281927 Numbers that are the product of exactly 10 primes and are of the form prime(n) + prime(n + 1).

Original entry on oeis.org

2304, 3456, 5184, 5376, 8448, 9600, 14400, 14976, 18816, 19008, 19440, 21888, 29440, 30208, 31488, 34048, 36096, 36608, 43264, 43904, 46848, 47040, 47232, 55552, 59520, 60000, 60160, 63936, 69696
Offset: 1

Views

Author

Zak Seidov, Feb 02 2017

Keywords

Comments

Intersection of A001043 and A046314. - Bruno Berselli, Feb 02 2017

Examples

			2304 = 2^8 * 3^2 = 1151 + 1153, 3456 = 2^7 * 3^3 = 1723 + 1733, 5184 = 2^6 * 3^4 = 2591 + 2593.
		

Crossrefs

Cf. A105936 (products of 3 primes), A281925 (products of 4 primes), A281926 (products of 5 primes).

Programs

  • Mathematica
    Total[#] & /@ Select[Partition[Prime[Range[10000]], 2, 1], 10 == PrimeOmega[Total[#]] &]

A321590 Smallest number m that is a product of exactly n primes and is such that m-1 and m+1 are products of exactly n-1 primes.

Original entry on oeis.org

4, 50, 189, 1863, 10449, 447849, 4449249, 5745249, 3606422049, 16554218751, 105265530369, 1957645712385
Offset: 2

Views

Author

Zak Seidov, Nov 13 2018

Keywords

Comments

From Jon E. Schoenfield, Nov 15 2018: (Start)
If a(11) is odd, it is 16554218751.
If a(12) is odd, it is 105265530369.
If a(13) is odd, it is 1957645712385. (End)
a(11), a(12), and a(13) are indeed odd. - Giovanni Resta, Jan 04 2019
10^13 < a(14) <= 240455334218751, a(15) <= 2992278212890624. - Giovanni Resta, Jan 06 2019

Examples

			For n = 3, 50 = 2*5*5, and the numbers before and after 50 are 49 = 7*7 and 51 = 3*17.
		

Crossrefs

Cf. A078840.
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).

Programs

  • Mathematica
    a[n_] := Module[{o={0,0,0}, k=1}, While[o!={n-1,n,n-1}, o=Rest[AppendTo[o,PrimeOmega[k]]]; k++]; k-2]; Array[a,7,2] (* Amiram Eldar, Nov 14 2018 *)
  • PARI
    {for(n=2,10,for(k=2^n,10^12,if(n==bigomega(k) &&
    n-1==bigomega(k-1) && n-1==bigomega(k+1),print1(k", ");break())))}

Extensions

a(10) from Jon E. Schoenfield, Nov 14 2018
a(11)-a(13) from Giovanni Resta, Jan 04 2019

A374231 a(n) is the minimum number of distinct numbers with exactly n prime factors (counted with multiplicity) whose sum of reciprocals exceeds 1.

Original entry on oeis.org

3, 13, 96, 1772, 108336, 35181993
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2024

Keywords

Examples

			a(1) = 3 since Sum_{k=1..2} 1/prime(k) = 1/2 + 1/3 = 5/6 < 1 and Sum_{k=1..3} 1/prime(k) = 1/2 + 1/3 + 1/5 = 31/30 > 1.
a(2) = 13 since Sum_{k=1..12} 1/A001358(k) = 1/4 + 1/6 + 1/9 + 1/10 + 1/14 + 1/15 + 1/21 + 1/22 + 1/25 + 1/26 + 1/33 + 1/34 = 15271237/15315300 < 1 and Sum_{k=1..13} 1/A001358(k) = 1/4 + 1/6 + ... + 1/35 = 15708817/15315300 > 1.
		

Crossrefs

Programs

  • Mathematica
    next[p_, n_] := Module[{k = p + 1}, While[PrimeOmega[k] != n, k++]; k]; a[n_] := Module[{k = 0, sum = 0, p = 0}, While[sum <= 1, p = next[p, n]; sum += 1/p; k++]; k]; Array[a, 5]
  • PARI
    nextnum(p, n) = {my(k = p + 1); while(bigomega(k) != n, k++); k;}
    a(n) = {my(k = 0, sum = 0, p = 0); while(sum <= 1, p = nextnum(p, n); sum += 1/p; k++); k;}
Previous Showing 41-46 of 46 results.