A094869
E.g.f.: exp(5x)/(1-5x)^(1/5).
Original entry on oeis.org
1, 6, 41, 356, 4401, 78826, 1893481, 56341416, 1978638881, 79749105326, 3622010623401, 182895318578956, 10160561511881041, 615728464210461906, 40414538467581457001, 2855999961062529064976, 216180544920721807887681
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[5x]/(1-5x)^(1/5),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 19 2014 *)
A094905
Expansion of e.g.f.: exp(6*x)/(1-6*x)^(1/6).
Original entry on oeis.org
1, 7, 55, 541, 7585, 157231, 4452247, 157484725, 6594785281, 317357589655, 17222102537911, 1039632137764237, 69073193451776545, 5007661199176196671, 393324947394545293975, 33268708968518818629541
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[6x]/Surd[1-6x,6],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 15 2022 *)
A059098
Triangle read by rows. T(n, k) = Sum_{i=0..n} Stirling2(n, i)*Product_{j=1..k} (i - j + 1) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 10, 12, 6, 15, 37, 62, 60, 24, 52, 151, 320, 450, 360, 120, 203, 674, 1712, 3120, 3720, 2520, 720, 877, 3263, 9604, 21336, 33600, 34440, 20160, 5040, 4140, 17007, 56674, 147756, 287784, 394800, 352800, 181440, 40320, 21147, 94828
Offset: 0
Triangle begins:
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 3, 2]
[3] [ 5, 10, 12, 6]
[4] [15, 37, 62, 60, 24]
[5] [52, 151, 320, 450, 360, 120]
[6] [203, 674, 1712, 3120, 3720, 2520, 720]
...;
E.g.f. for T(n, 2) = (exp(x)-1)^2*(exp(exp(x)-1)) = x^2 + 2*x^3 + 31/12*x^4 + 8/3*x^5 + 107/45*x^6 + 343/180*x^7 + 28337/20160*x^8 + 349/360*x^9 + ...;
E.g.f. for T(n, 3) = (exp(x)-1)^3*(exp(exp(x)-1)) = x^3 + 5/2*x^4 + 15/4*x^5 + 13/3*x^6 + 127/30*x^7 + 1759/480*x^8 + 34961/12096*x^9 + ...
-
T := proc(n, k) option remember; `if`(k < 0 or k > n, 0,
`if`(n = 0, 1, k*T(n-1, k-1) + (k+1)*T(n-1, k) + T(n-1, k+1)))
end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..15); # Peter Bala, Oct 15 2023
A094911
Expansion of e.g.f. exp(7*x)/(1-7*x)^(1/7).
Original entry on oeis.org
1, 8, 71, 778, 12125, 284012, 9241891, 378595022, 18409947641, 1029827400400, 64998958518719, 4565303338264082, 353016345110857429, 29793105387299603252, 2724646021507044539675, 268374407984059193374678
Offset: 0
A094935
E.g.f.: exp(8x)/(1-8x)^(1/8).
Original entry on oeis.org
1, 9, 89, 1073, 18321, 476473, 17484457, 813648417, 45054110369, 2872362067433, 206710159889529, 16558892507010961, 1460688620617834801, 140655075719488236057, 14678730623948132120009
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[8x]/Surd[1-8x,8],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 25 2019 *)
A095176
E.g.f.: exp(9x)/(1-9x)^(1/9).
Original entry on oeis.org
1, 10, 109, 1432, 26497, 754894, 30787885, 1603546156, 99602138593, 7128277455538, 576063289419661, 51832424202980320, 5136461847251936929, 555721381650431686582, 65167921144448534609677
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[9x]/Surd[1-9x,9],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 25 2020 *)
Comments