cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A071852 Smallest k such that 2^k + 1 has exactly n distinct prime factors.

Original entry on oeis.org

1, 5, 14, 18, 30, 42, 99, 114, 78, 90, 175, 150, 324, 210, 315, 234, 270, 585, 405, 765, 390, 450, 510, 1150, 690, 630, 930, 858, 810, 1155, 966, 1386
Offset: 1

Views

Author

Benoit Cloitre, Jun 09 2002

Keywords

Comments

a(33) > 1500; a(34) = 1365; a(35) = 1350; a(38) = 1170; a(41) = 1530. - Max Alekseyev, Oct 14 2012
a(33) <= 1782; a(36) <= 1710; a(42) <= 2142; a(43) <= 2394; a(44) <= 1890; a(45) <= 2310; a(46) <= 2070. - Jon E. Schoenfield, Sep 03 2022

Crossrefs

Cf. A046799.

Programs

  • Mathematica
    For[n = 1, n < 15, n++, k := 1; While[Not[Length[FactorInteger[2^k + 1]] == n], k++ ]; Print[k]] (* Stefan Steinerberger, Apr 09 2006 *)
  • PARI
    for(n=1,10,s=1; while(abs(omega(2^s+1)-n)>0,s++); print1(s,","))

Formula

a(n) = min (k : A046799(k) = n ).

Extensions

175 and 150 from Erich Friedman, Aug 08 2005
a(13)-a(23) from Donovan Johnson, Apr 22 2008
a(24)-a(32) from Max Alekseyev, Oct 14 2012

A356873 a(n) is the smallest number k such that 2^k+1 has at least n distinct prime factors.

Original entry on oeis.org

0, 5, 14, 18, 30, 42, 78, 78, 78, 90, 150, 150, 210, 210, 234, 234, 270, 390, 390, 390, 390, 450, 510, 630, 630, 630, 810, 810, 810, 966, 966, 1170, 1170, 1170, 1170, 1170, 1170, 1170
Offset: 1

Views

Author

Alex Ratushnyak, Sep 02 2022

Keywords

Comments

From Jon E. Schoenfield, Sep 04 2022: (Start)
a(39) <= a(40) <= a(41) <= 1530.
a(42) <= a(43) <= a(44) <= 1890.
a(45) <= a(46) <= 2070.
a(47) <= a(48) <= ... <= a(54) = 2730. (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=0}, While[ Length@ FactorInteger[2^k + 1] < n, k++]; k]; Array[a, 12] (* Giovanni Resta, Oct 13 2022 *)
  • PARI
    a(n) = my(k=1); while (omega(2^k+1) < n, k++); k; \\ Michel Marcus, Sep 05 2022
  • Python
    from sympy import factorint, isprime
    from itertools import count, islice
    def f(n): return 1 if isprime(n) else len(factorint(n))
    def agen():
        n = 1
        for k in count(0):
            v = f(2**k+1)
            while v >= n: yield k; n += 1
    print(list(islice(agen(), 10))) # Michael S. Branicky, Sep 02 2022
    

Extensions

a(11)-a(38) from Michael S. Branicky, Sep 02 2022 using A071852
Previous Showing 21-22 of 22 results.